The Maximum Number of Spanning Trees of a Graph with Given Matching Number

Author(s):  
Muhuo Liu ◽  
Guangliang Zhang ◽  
Kinkar Chandra Das
2015 ◽  
Vol 93 (6) ◽  
pp. 837-843 ◽  
Author(s):  
Lihua Feng ◽  
Kexiang Xu ◽  
Kinkar Ch. Das ◽  
Aleksandar Ilić ◽  
Guihai Yu

Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 103
Author(s):  
Tao Cheng ◽  
Matthias Dehmer ◽  
Frank Emmert-Streib ◽  
Yongtao Li ◽  
Weijun Liu

This paper considers commuting graphs over the semidihedral group SD8n. We compute their eigenvalues and obtain that these commuting graphs are not hyperenergetic for odd n≥15 or even n≥2. We further compute the Laplacian spectrum, the Laplacian energy and the number of spanning trees of the commuting graphs over SD8n. We also discuss vertex connectivity, planarity, and minimum disconnecting sets of these graphs and prove that these commuting graphs are not Hamiltonian.


1998 ◽  
Vol 179 (1-3) ◽  
pp. 155-166 ◽  
Author(s):  
L. Petingi ◽  
F. Boesch ◽  
C. Suffel

2016 ◽  
Vol 25 (09) ◽  
pp. 1641005
Author(s):  
Jun Ge ◽  
Lianzhu Zhang

In this note, we first give an alternative elementary proof of the relation between the determinant of a link and the spanning trees of the corresponding Tait graph. Then, we use this relation to give an extremely short, knot theoretical proof of a theorem due to Shank stating that a link has component number one if and only if the number of spanning trees of its Tait graph is odd.


2015 ◽  
Vol 91 (3) ◽  
pp. 353-367 ◽  
Author(s):  
JING HUANG ◽  
SHUCHAO LI

Given a connected regular graph $G$, let $l(G)$ be its line graph, $s(G)$ its subdivision graph, $r(G)$ the graph obtained from $G$ by adding a new vertex corresponding to each edge of $G$ and joining each new vertex to the end vertices of the corresponding edge and $q(G)$ the graph obtained from $G$ by inserting a new vertex into every edge of $G$ and new edges joining the pairs of new vertices which lie on adjacent edges of $G$. A formula for the normalised Laplacian characteristic polynomial of $l(G)$ (respectively $s(G),r(G)$ and $q(G)$) in terms of the normalised Laplacian characteristic polynomial of $G$ and the number of vertices and edges of $G$ is developed and used to give a sharp lower bound for the degree-Kirchhoff index and a formula for the number of spanning trees of $l(G)$ (respectively $s(G),r(G)$ and $q(G)$).


10.37236/2479 ◽  
2012 ◽  
Vol 19 (3) ◽  
Author(s):  
Michal Kotrbčík ◽  
Martin Škoviera

We study the interplay between the maximum genus of a graph and bases of its cycle space via the corresponding intersection graph. Our main results show that the matching number of the intersection graph is independent of the basis precisely when the graph is upper-embeddable, and completely describe the range of matching numbers when the graph is not upper-embeddable. Particular attention is paid to cycle bases consisting of fundamental cycles with respect to a given spanning tree. For $4$-edge-connected graphs, the intersection graph with respect to any spanning tree (and, in fact, with respect to any basis) has either a perfect matching or a matching missing exactly one vertex. We show that if a graph is not $4$-edge-connected, different spanning trees may lead to intersection graphs with different matching numbers. We also show that there exist $2$-edge connected graphs for which the set of values of matching numbers of their intersection graphs contains arbitrarily large gaps.


10.37236/2389 ◽  
2012 ◽  
Vol 19 (2) ◽  
Author(s):  
Murali Krishna Srinivasan

The number of spanning trees of a graph $G$ is called the complexity of $G$. A classical result in algebraic graph theory explicitly diagonalizes the Laplacian of the $n$-cube $C(n)$  and yields, using the Matrix-Tree theorem, an explicit formula for $c(C(n))$. In this paper we explicitly block diagonalize the Laplacian of the $q$-analog $C_q(n)$ of $C(n)$ and use this, along with the Matrix-Tree theorem, to give a positive combinatorial formula for $c(C_q(n))$. We also explain how setting $q=1$ in the formula for $c(C_q(n))$ recovers the formula for $c(C(n))$.


10.37236/3752 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Catherine Greenhill ◽  
Matthew Kwan ◽  
David Wind

Let $d\geq 3$ be a fixed integer.   We give an asympotic formula for the expected number of spanning trees in a uniformly random $d$-regular graph with $n$ vertices. (The asymptotics are as $n\to\infty$, restricted to even $n$ if $d$ is odd.) We also obtain the asymptotic distribution of the number of spanning trees in a uniformly random cubic graph, and conjecture that the corresponding result holds for arbitrary (fixed) $d$. Numerical evidence is presented which supports our conjecture.


Sign in / Sign up

Export Citation Format

Share Document