square integrable basis
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Olga Rubtsova ◽  
Vladimir N Pomerantsev

Abstract A spectral shift function (SSF) is an important object in the scattering theory which is related both to the spectral density and to the scattering matrix. In the paper, it is shown how to employ the SSF formalism to solve scattering problems when the continuum is discretized, e.g. when solving a scattering problem in a finite volume or in the representation of some finite square-integrable basis. A new algorithm is proposed for reconstructing integrated densities of states and the SSF using a union of discretized spectra corresponding to a set of Gaussian bases with the shifted scale parameters. The examples given show that knowledge of the discretized spectra of the total and asymptotic Hamiltonians is sufficient to find the scattering partial phase shifts at any required energy, as well as the resonances parameters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rolf Gersbacher ◽  
John T. Broad

AbstractThe quantum-mechanical Coulomb propagator is represented in a square-integrable basis of Sturmian functions. Herein, the Stieltjes integral containing the Coulomb spectral function as a weight is evaluated. The Coulomb propagator generally consists of two parts. The sum of the discrete part of the spectrum is extrapolated numerically, while three integration procedures are applied to the continuum part of the oscillating integral: the Gauss–Pollaczek quadrature, the Gauss–Legendre quadrature along the real axis, and a transformation into a contour integral in the complex plane with the subsequent Gauss–Legendre quadrature. Using the contour integral, the Coulomb propagator can be calculated very accurately from an L$$^2$$ 2 basis. Using the three-term recursion relation of the Pollaczek polynomials, an effective algorithm is herein presented to reduce the number of integrations. Numerical results are presented and discussed for all procedures.


2018 ◽  
Vol 33 (32) ◽  
pp. 1850187 ◽  
Author(s):  
I. A. Assi ◽  
H. Bahlouli ◽  
A. Hamdan

This work aims at introducing two new solvable 1D and 3D confined potentials and present their solutions using the Tridiagonal Representation Approach (TRA). The wave function is written as a series in terms of square integrable basis functions which are expressed in terms of Jacobi polynomials. The expansion coefficients are then written in terms of new orthogonal polynomials that were introduced recently by Alhaidari, the analytical properties of which are yet to be derived. Moreover, we have computed the numerical eigenenergies for both potentials by considering specific choices of the potential parameters.


2010 ◽  
Vol 50 (1-4) ◽  
pp. 455-458
Author(s):  
Wataru Horiuchi ◽  
Yasuyuki Suzuki ◽  
Daniel Baye

Sign in / Sign up

Export Citation Format

Share Document