thermal waters
Recently Published Documents


TOTAL DOCUMENTS

635
(FIVE YEARS 185)

H-INDEX

33
(FIVE YEARS 4)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 167
Author(s):  
Fabio Fanari ◽  
Matteo Bruno Lodi ◽  
Worash Getaneh ◽  
Alessandro Fanti ◽  
Francesco Desogus ◽  
...  

Several studies have shown the presence of fluoride levels much higher than the 1.5 mg/L threshold concentration recommended by WHO in the spring waters and wells of the Ethiopian Rift Valley. Available defluoridation techniques can be costly, present complicated technical aspects, and show limited effectiveness. Therefore, it is necessary to devise innovative, sustainable, and effective solutions. This study proposes an alternative method of intervention to the known techniques for removing fluoride from water, particularly suitable for smaller rural communities. In particular, in this work, the possibility to use electromagnetic fields as a physical method for removing the excess fluoride was investigated. The study was carried out by developing a multiphysics model used for studying and envisaging the design of a device. In this framework, the combination of this approach with the use of highly reactive smectite clay was numerically studied. The results obtained, although preliminary, indicate that the proposed system could significantly impoverish the waters of the Rift Valley from fluoride, with the consequence of obtaining a resource suitable for human consumption, in particular for rural communities. However, further theoretical investigations and experimental phases will be necessary to achieve the desired results.


2022 ◽  
Vol 2150 (1) ◽  
pp. 012032
Author(s):  
D A Alkhasova ◽  
B A Alkhasov

Abstract The research concerns the efficient development of low-potential thermal waters in the East-Ciscaucasian artesian basin. A technology is proposed for the integrated development of low-temperature thermal water, using its heat potential for district heating and hot water supply, as well the water itself for various water management purposes, with its quality previously brought to the standards of drinking water. Various chemical water treatment units are suggested for this purpose, with their design and technological features being formed depending on the quality of the source water. The system will enable the maximization of the resource potential of the geothermal well and its all-year-round operation. The paper shows the efficiency of using the potential of geothermal energy resources in energy- biological complexes. The geothermal-biogas technology with the integrated application of thermal waters for various needs is presented. Such thermal water utilization provides for the most efficient use of its thermal potential with a decrease in temperature to a value close to the ambient temperature.


Author(s):  
Dóra Gere ◽  
Eszter Róka ◽  
Norbert Erdélyi ◽  
Zsuzsanna Bufa-Dörr ◽  
Gyula Záray ◽  
...  

Abstract Thermal therapeutic pools in most countries are operated in a manner similar to swimming pools: with water circulation, filtration and disinfection. However, in some countries, including Hungary, therapeutic pools are traditionally not treated this way, in order to preserve the therapeutic qualities of the water. However, dilution and frequent water replacement applied in these pools are often insufficient to ensure adequate microbial water quality, posing a risk of infection to the bathers. In the present case study, the impact of water treatment (including chemical disinfection by hypochlorite or hydrogen peroxide) was investigated on the therapeutic components of the water in seven Hungarian spas of various water composition. Microbial quality was improved by both disinfectants, but hypochlorite reduced the concentration of the therapeutic components sulfide, bromide, and iodide ions by 40–99%, and high levels of disinfection by-products were observed. Hydrogen peroxide only affected sulfide ion (91% reduction). Other technological steps (e.g., transport or cooling by dilution) were found to have significant impact on composition, often outweighing the effect of disinfection. The current case study demonstrated that thermal waters may be treated and disinfected with minimal loss of the therapeutic compounds, if an adequate treatment procedure is selected based on the water composition.


2021 ◽  
Vol 946 (1) ◽  
pp. 012028
Author(s):  
E V Lebedeva ◽  
R V Zharkov

Abstract Within the watercourse valleys of geothermal zones, where manifestations of gas-hydrothermal activity are noted, the processes of relief formation are accompanied by chemical and thermal effects. Thermal waters contribute to the formation of specific accumulative landforms both directly in the channel and in the bottom and on the sides of river valleys. Similar phenomena have been studied in river valleys draining the slopes of the Mendeleev volcano (Kunashir Island), Baransky volcano (Iturup Island), Mutnovsky volcano and Uzon-Geyzernaya caldera (Kamchatka). The typification of accumulative relief forms is carried out, the influence of gas-hydrothermal manifestations on fluvial and slope processes is determined.


2021 ◽  
pp. 27-37
Author(s):  
V.A. Stennikov ◽  
S. Batmunkh ◽  
P.A. Sokolov

The paper addresses methodological and technological issues of building environmentally friendly and efficient energy supply based on geothermal energy sources. Geothermal potential in the world, accentuating that in Russia (areas of the Baikal natural territory) and Mongolia, is analyzed considering the possibility of its implementation in the thermal power industry. Geothermal areas of Central Mongolia are characterized by increased heat flows and occurrences of thermal waters. The most promising thermal spring occurrences are the Shivert, Shargalzhuut, Tsenkher, Otgontenger, and Khuzhirt, to name some of them. Currently, the thermal energy potential of the Khangai arched uplift in Central Mongolia is employed to heat industrial, agricultural, and civil facilities. There are also plans to consider the possibility of large-scale employment of thermal waters of the region for electricity generation. An example of using geothermal waters for electricity generation is given, and the possibility of establishing a heating system in the city of Tsetserleg based on a geothermal heat pump unit with a wind power plant is assessed.


2021 ◽  
Vol 50 (3) ◽  
pp. 3-13
Author(s):  
Vladimir Hristov ◽  
Nikolay Stoyanov ◽  
Simeon Valchev ◽  
Aleksey Benderev

Sofia, the capital of Bulgaria, is situated in a region rich in thermal waters, which were a major factor for the establishment and development of the city. The thermal spring in the city center of Sofia has been in use since ancient times. As the city expanded rapidly in the 19th and 20th centuries, it absorbed many other sources of thermal water. In addition, the available volume of usable thermal water increased with the construction of abstraction wells. The prevailing types of thermal waters are sourced from Mesozoic rocks at the base of the Sofia graben. The water temperatures are in the range between 21 °C and 54 °C, and the mineralization is up to approximately 1 g/L total dissolved solids (TDS). There is only one source in deeper rock formations with approximately 4 g/L TDS. The population of the city utilizes the thermal water resources to a various degree, mainly for bottling of natural mineral water. Some sources are used for balneology, sport, recreation and sanitation; however, their potential is not sufficiently utilized. Considering the importance of the thermal water resources for the city and its population, a numerical model was set up to study the impact of subway construction on the thermal spring in the center of Sofia.


2021 ◽  
Vol 15 (6) ◽  
pp. 602-609
Author(s):  
I. V. Bragin ◽  
G. A. Chelnokov ◽  
N. A. Kharitonova

2021 ◽  
Vol 44 (3) ◽  
pp. 243-252
Author(s):  
D. Surmaajav ◽  
Ch. Ariunaa

The first prospect evaluation hydrogeological survey of underground mineral thermal waters formed by Khulj hot spring in Bulgan aimag, Mongolia was conducted in 1973. And since then no research has been conducted. However, in 2020–2021, the Governor of Bulgan aimag initiated a hydrogeological exploration study of Khulj spring in order to determine its mineral thermal water resources. The works were funded by the state budget. It was the first time that the mineral thermal water resources of Khulj spring were estimated and classified to the category B in accordance with the degree of geological and hydrogeological study. Conducted exploration works allowed to investigate and specify geological-structural, hydrogeochemical and hydrogeothermal features that determined the formation of the mineral thermal water deposit.


Sign in / Sign up

Export Citation Format

Share Document