potential energy surface calculation
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 1)

H-INDEX

0
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
pp. 38-43
Author(s):  
Nguyen Trong Nghia ◽  
Nguyen Duc Trung ◽  
Tran Thi Thoa ◽  
Phan Thi Thuy

C2H5OH is one of important renewable fuels. The mechanism for the C2H5OH + HCO reaction has been investigated by a potential energy surface calculation at the B3LYP/aug-cc-pVTZ (optimization) and CCSD(T)/cc-pVTZ (single-point) levels. Our results show that the HCO free radical can abstract the H atoms in the OH group giving CH3CH2O + CH2O or in the CH2 group giving CH3CHOH + CH2O. The rate constant results by TST calculations considering tunneling corrections show that the second pathway is dominate in all the calculation temperature range of 300-2000K.



2018 ◽  
Vol 34 (6) ◽  
pp. 2992-2997
Author(s):  
H. El-Hadki ◽  
F. Hlimi ◽  
M. Salah ◽  
K. Marakchi ◽  
N. Komiha ◽  
...  

The regioselectivity of the reaction between phenyldiazen-1-ium-1-ylidene p-tolyl methanide and ethyl 4-benzoyl-4H-benzo [1,4]oxazine-2-carboxylate were studied by means of the DFT/B3LYP method coupled by the 6-31g(d) basis and MP2 in connection with 6-31G(d) and 6-31G+(d,p) basis set. The mechanism of this regioselectif reaction has performed by transition state optimization, evaluation of the potential energy surface, calculation of IRC and reactivity indices. Location and verification of minima and transition structures have been realized by using the Berny's algorithm. The process of formation of the two regioisomers is achieved through concerted and asynchronous mechanism. The results are in good agreement with the experimental data.



Sign in / Sign up

Export Citation Format

Share Document