Vietnam Journal of Catalysis and Adsorption
Latest Publications


TOTAL DOCUMENTS

166
(FIVE YEARS 166)

H-INDEX

0
(FIVE YEARS 0)

Published By Hanoi University Of Science And Technology

0866-7411

2021 ◽  
Vol 10 (1) ◽  
pp. 21-27
Author(s):  
Tuan Vu Anh ◽  
Hoa Vu Thi ◽  
Manh Nguyen Ba ◽  
Giang Le Ha ◽  
Trang Pham Thi Thu ◽  
...  

Nano Fe-BTC materials were successfully synthesized by mechanical chemical grinding method. Samples were characterized by X-ray difraction (XRD), Fourier-transform infrared spectroscopy (FTIR), N2 adsorption–desorption, Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS). SEM image of Fe-BTC-60 showed the particle size of 40–60 nm. Fe-BTC nanocomposites were tested for the photocatalytic degradation of reactive yellow 145 (RY-145) in aqueous solution. Fe-BTC composites exhibited high photocatalytic activity. Thus, at pH of 3 and high initial concentration of 100 mg RY-145/L, removal efficiency reached the value of 97.45% after 90 min of reaction.


2021 ◽  
Vol 10 (1) ◽  
pp. 59-66
Author(s):  
Son Le Lam ◽  
Phu Nguyen Vinh ◽  
Hieu Le Trung ◽  
Tan Le Thua ◽  
Nhan Dang Thi Thanh ◽  
...  

Glucomannan/graphene oxide (GM/GO) hydrogel was synthesized by using calcium hydroxide as the crosslinker. The synthesized material was characterized by using IR, XRD, SEM, EDX and RAMAN technology. The composite hydrogel was used for removal of organic dyes from aqueous solution. The results showed that the GM/GO hydrogel had a porous structure and a high adsorption capacity toward methylene blue (MB). The pseudo-second-order kinetic model could fit the rate equation of MB adsorption onto the GM/GO hydrogel. The adsorption of MB onto GM/GO hydrogel was a spontaneous process. In addition, the equilibrium adsorption isotherm data indicated that equilibrium data were fitted to the Langmuir isotherm and the maximum dye adsorption capacity was 198,69 mg.g-1. Moreover, the hydrogel was stable and easily recovered and adsorption capacity was around 97% of the initial saturation adsorption capacity after being used five times.


2021 ◽  
Vol 10 (1) ◽  
pp. 8-12
Author(s):  
Ha Nguyen Thi Thu ◽  
Anh Tran Thi Van ◽  
Anh Nguyen Ha

The adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) on the catalytic systems comprising a transition metal (Fe, Ag) on a single walled carbon nanotube (CNT) has been investigated using density functional theory method. The adsorption energy, charges on atoms, bond orders have been calculated and analysed. The obtained results indicate that the adsorption of 2,4-D on the pristine CNT is physical of nature. Metal atoms can easily be doped on CNT due to the formation of chemical bonds. The M-CNT systems (M = Fe, Ag) have the ability to chemically adsorb 2,4-D. The results have also shown that the Fe-CNT is more effective at adsorbing 2,4-D as compare to the Ag-CNT.


2021 ◽  
Vol 10 (1) ◽  
pp. 122-127
Author(s):  
Mai Vo Quang ◽  
Sang Nguyen Xuan

In this work, nanohybridization of ZnO nanorod and graphene oxide (GO) were prepared by a facile hydrothermal method. The effects of GO on crystal structure and surface morphology of ZnO were revealed by Scanning electron microscopy (SEM), Raman, and X-ray diffraction (XRD). The presence of GO in the composite resulted the ZnO nanorod more uniform which its diameter size was decreased. Optical properties characterized by UV-vis diffuse reflectance spectra (DRS) showed that the ZnO/GO composite has the narrower bandgap value and the better visible-light absorption characterisitics in compare to the bare ZnO. As a result, the photocatalytic ability in degradation of methylene blue under solar irradiation was enhanced in the ZnO/GO composite.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-7
Author(s):  
Thuy Le Thi Thanh ◽  
Tung Huynh Thanh ◽  
Hung Nguyen Phi

Using carbon, nitrogen, and sulfur sourced from thiourea to co-doped TiO2 (C,N,S-TiO2), was prepared via hydrothermal method using precursors of titanyl sulfate TiOSO4, obtained by decomposition of ilmenite ore in Binh Dinh. The material used to make the substrate is glass and distributed onto it is silicone and photocatalytic. The structure and properties of materials system were investigated by modern physicochemical analysis methods including scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, diffuse reflection spectroscopy UV-Vis, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and nitrogen isothermal adsorption. The photocatalytic ability of materials system after being carried by silicone is demonstrated by decomposing tetracycline (10 mg/L) in aqueous solution with the yield more than 88% efficiency after 6 hours under visible light irradiation. The optimum dose of the photocatalyst was 0.6 g/L under visible light irradiation. The results indicated that C, N, S co-doped TiO2 demonstrated the highest photocatalytic efficiency and a perspective recyclable potential when it is distributed onto silicone.


2021 ◽  
Vol 10 (1) ◽  
pp. 13-20
Author(s):  
Thien Tran Vinh ◽  
Tu Nguyen Thi Thanh ◽  
Son Bui Hai Dang

The paper presents the modification of Phu Yen diatomite by oxidation-reduction reaction between Fe (II) and KMnO4 salts in solution pH = 6 on the diatomite surface. Characteristics of modified materials and the influence of research factors on these characteristics were investigated using techniques XRD, EDX, XPS, SEM, TEM, BET. Arsenic adsorption capacity of modified materials, the influence of environmental factors on the adsorption capacity were also investigated and evaluated. The results showed that mixed oxide-modified diatomite has higher arsenic adsorption capacity than natural diatomite and modified diatomite by individual oxides.


2021 ◽  
Vol 10 (1) ◽  
pp. 54-58
Author(s):  
Thuan Huynh Minh ◽  
Sura Nguyen ◽  
Ngan Nguyen Thi Kim ◽  
Huan Nguyen Manh ◽  
Noa Uy Do Pham ◽  
...  

In this study, a thin stainless-steel foil was used as a catalyst for carbon nanotubes (CNTs) using methane as a carbon source via the chemical vapor deposition (CVD) method. Our results revealed that pre-treatment step of the catalyst plays an important role in CNT formation. In our experiments, a catalyst pre-treatment temperature of 850 oC have been found to facilitate the surface roughness and provide more active nucleation sites for CNTs formation. Multiwalled CNTs with 6 layers, their diameters of 10 – 20 nm and their length of app. 300 nm were grown. This finding might lead to a process for improving the quality of MWCNTs grown on steel foil as catalyst.


2021 ◽  
Vol 10 (1) ◽  
pp. 84-92
Author(s):  
Chinh Pham Duc ◽  
Thuy Nguyen Thi Thu ◽  
Tham Bui Thi ◽  
Quang Phan Ngoc ◽  
Cuong Pham Manh ◽  
...  

The photocatalytic reaction using TiO2 suspended to degrade the residues of toxic organic compounds has been extensively studied, but the ultilization of this process has not been recorded on an industrial scale. One of the primary reasons is the separation of TiO2 catalyst from the treated solution mixture. Conventional mechanical separation methods such as centrifugation, flocculation-deposition do not allow for thorough separation and catalytic reuse, whereas the microfiltration / ultrafiltration membrane process has been demonstrated to be capable of composting isolates very suspended particles. Accordingly, in this study, an experimental system separating TiO2-P25 suspension by microfiltration membrane 0.2 µm on laboratory scale was set up. Effects of operating factors: TiO2 concentration, pH value, transmembrane pressure and crosss flow velocity were investigated. Result shown that TiO2 concentration greater than 1 g / l will fundamentally diminish the permeate flux, futhermore, in the transmembrane  pressure differential (∆P) fluctuating from 0.3 to 1.2 bar, the relationship between J and ∆P is a linear relationship. In addition, the study likewise shown that the formation of the cake layer (scale) on the membrane surface is the fundamental driver of the permeate flux degradation over time. These results are the basis for integrating membrane and photocatalytic processes into a complete system for degradation toxic organic compound residues.


2021 ◽  
Vol 10 (1) ◽  
pp. 74-78
Author(s):  
Nhan Dang Thi Thanh ◽  
Don Truong Thi ◽  
Thang Le Quoc ◽  
Tien Tran Dong ◽  
Son Le Lam

Presently, biopolymer materials have been given more attention for their outstanding properties, high efficiencies and promising applications in various fields. In this study, Fe2O3/chitosan aerogel-like spheres were successfully prepared from chitosan and FeCl3 by sol–gel process and freeze-drying to provide high-surface area materials. The factors affecting the material synthesis have been studied. The asprepared Fe2O3/chitosan material was characterized by Infrared Spectroscopy (IR), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) methods. The results showed that the aerogel spheres have a hollow structure made of chitosan nanofibril networks. Fe2O3 nanoparticles get high crystallinity and have an average particle size of 33 nm.


2021 ◽  
Vol 10 (1) ◽  
pp. 93-97
Author(s):  
Luyen Tran Thi ◽  
Benjamin Schille ◽  
Robert Francke

Requirements for using Poly (2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PolyTEMPO) as an electrocatalyst for the organic electrosynthesis of benzonitrile from benzyl alcohol were investigated. The research results indicated that PolyTEMPO expressed catalytic activity in the electrosynthesis of benzonitrile from benzyl alcohol in the presence of ammonium acetate. The electrosynthesis yield of benzonitrile from benzyl alcohol with PolyTEMPO catalyst reached the maximum value at 35 °C after 18 hours. 


Sign in / Sign up

Export Citation Format

Share Document