portland cement hydration
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 19)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 325 ◽  
pp. 9-20
Author(s):  
Evaldas Serelis ◽  
Vitoldas Vaitkevicius

Glass is an amorphous material, which could be a good pozzolanic material and can be beneficial in compressive strength gain. However, if waste of glass powder has undesirable contaminations (aluminium, clay impurities, sulphates, etc.) it can negatively affect hydration process. In the research were used two types of waste glass (with and without harmful impurities). Waste glass shards were obtained from a local waste recycling plant and its properties were investigated in the Portland cement hydration process. Properties of waste glass were analysed by SEM, XRD test methods, pozzolanicity of glass powder was investigated by Chappelle test method. The hydration process of Portland cement was researched by the semi-adiabatic test method and XRD analysis. Properties of hardened cement paste was analysed by: density, flexural and compressive strength test methods The main aim of this research is to analyse waste glass, which after primary cleaning is not suitable for secondary reuse and investigate its suitability in cement-based systems.


2021 ◽  
Vol 304 ◽  
pp. 124648
Author(s):  
Ekaterina Karpova ◽  
Gintautas Skripkiūnas ◽  
Irmantas Barauskas ◽  
Ieva Barauskienė ◽  
Jakub Hodul

Author(s):  
Kalina Grabowska ◽  
Marcin Koniorczyk

AbstractThe impact of three different organosilicon compounds: poly(dimethylsiloxane) (PDMS), potassium methylsiliconate (MESI) and triethoxyoctylsilane (OTES), used as integral admixtures, on Portland cement hydration has been investigated by isothermal calorimetry and DTA-TG analysis. The silicon-based compounds are widely used as internal hydrophobic agents added into batch water; therefore, their effectiveness was investigated by means of capillary water absorption test. The isothermal calorimetry was used to measure the rate and amount of heat released during ordinary Portland cement hydration with integral organosilicon admixtures at 20 °C, 30 °C, 40 °C and 50 °C. It allowed to determine the activation energy as well. The results indicate that used admixtures (except MESI admixture) decrease in the rate and amount of heat release during cement hydration. In addition, it is noticeable that the addition of MESI admixture significantly prolongs the induction period and delays hydration. In contrast to MESI and OTES admixtures, PDMS-based admixture does not affect significant on the activation energy. DTA-TG analysis had shown differences between reference sample and samples containing organosilicon admixtures during thermal decomposition, in terms of the amount of moisture and bound water, as well as Ca(OH)2 or carbonates. The results presented in this paper enable a better understanding of the interactions between the organosilicon integral admixtures and the cement matrix. The study shows the effect of integral admixtures on cement hydration and thus the potential effect on the final properties of the cement-based material.


2020 ◽  
Vol 259 ◽  
pp. 120390
Author(s):  
Jinfeng Sun ◽  
Liang Tian ◽  
Zhuqing Yu ◽  
Yu Zhang ◽  
Chengdong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document