scholarly journals INFLUENCE OF NATURAL ZEOLITE ON PORTLAND CEMENT HYDRATION PROCESSES AND PROPERTIES OF HARDENED CEMENT PASTE

2021 ◽  
pp. 1-9
Author(s):  
Dalius Kriptavicius
Author(s):  
Mohd Azrul Andul Rajak ◽  
Zaiton Abdul Majid ◽  
Mohammad Ismail

Integration of cement-based products with nanosized-palm oil fuel ash as supplementary cementing material (SCM) amend its hydration’s degree at early age phase and the microstructural groundworks are relevant to explain the findings. Hence, the present work investigates the microstructure properties of the hardened cement paste (HCP) incorporating nPOFA to study on the effect of nPOFA in cement hydration at an early age phase. An Ordinary Portland Cement (OPC) paste as a set of HCP blended with microsized-palm oil fuel ash (mPOFA) (10-30%) and nPOFA (10-60%) were prepared and cured for 28 days. The microstructural examination of OPC, mPOFA and nPOFA cement pastes at 28 days curing age via Thermogravimetric (TG) analysis, X-Ray diffraction (XRD) analysis, morphology study and Fourier transform infrared (FTIR) spectroscopy analysis. In TG analysis, the relative weight loss of calcium hydroxide (CH) of nPOFA pastes is lower than OPC and mPOFA. Based on the CH peaks at 2?= 18.1°and 34.0° in the diffractogram, it shows that nPOFA pastes give the low CH peaks compare to OPC and mPOFA pastes. In addition, the nPOFA pastes form the dense and compact microstructure of HCP compare to other pastes. Observations from FTIR analysis, nPOFA pastes display a high frequency of Si-O band due to the high rate of pozzolanic reaction. Overall, the findings confirmed the contribution of nPOFA in accelerating the rate of cement hydration and pozzolanic reaction as it reduced the amount of CH in the cementitious matrix.


2018 ◽  
Vol 196 ◽  
pp. 04018 ◽  
Author(s):  
Grigory Nesvetaev ◽  
Yulia Koryanova ◽  
Tatiana Zhilnikova

A model describing the variation in autogenous shrinkage and drying shrinkage of portland cement concrete, depending on the volume of aggregates and the shrinkage of hardened cement paste, is presented. The equation to calculate shrinkage of concrete as a function of the volume of aggregates and shrinkage of a hardened cement paste was proposed. Formulas are proposed that describe the change in the shrinkage of hardened cement paste as a function of water/cement. The results of studies of the effect of superplasticizers and mineral additives on the autogenous shrinkage and the drying shrinkage of hardened cement paste are presented. Concretes made with superplasticizer and mineral additive may have the potential lower the value of drying shrinkage. The shrinkage value can be lowered from 30% till 70%. Concretes containing superplasticizers and mineral additives can potentially have the autogenous shrinkage reduced to 75%, or increased to 180%.


2013 ◽  
Vol 753-755 ◽  
pp. 543-557
Author(s):  
Yan Jun Liu ◽  
Bo Tian Chen ◽  
Yong Chao Zheng

Cement hydration products carbonation is not only blamed for the carbonation-induced hardened cement paste or concrete cracking, also attributed to the pore water PH-value decrease, which causes the reinforcement corrosion under the existence of water and oxygen due to removal of oxide film passivating rebar surface, in hardened cement paste and concrete. Based on chemical thermodynamics, this paper presents the susceptibility of different cement hydration products to carbonation through calculating their Standard Gibbs Free Energy respectively, Gibbs free energy under temperature variation and the minimum equilibrium pressure of carbon dioxide triggering the carbonation process. The calculated results show that, under standard state (25°C, 100kpa), the minimum equilibrium pressure of carbon dioxide triggering carbonation process is significantly variable for different types of cement hydration products. For example, mono-sulfate sulfoferrite hydrates (3CaOFe2O3CaSO412H2O) is the most susceptible to carbonation, followed by mono-sulfate aluminate hydrates (3CaOAl2O3CaSO412H2O), while multi-sulfate sulfoaluminate hydrates (3CaOAl2O33CaSO432H2O) is the least vulnerable to carbonation, followed by silicate hydrates (5CaO6SiO25.5H2O). The findings in this paper are significant in understanding thermodynamic mechanism of cement hydrates carbonation and seeking the solution to prevent cement hydrates from carbonation-induced deterioration.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1002
Author(s):  
Grigory Yakovlev ◽  
Rostislav Drochytka ◽  
Gintautas Skripkiunas ◽  
Larisa Urkhanova ◽  
Irina Polyanskikh ◽  
...  

The present research is focused on the investigation of the influence of ultrafine additives on the structure formation of hardened cement paste and the establishment of the mechanisms of the morphological transformations, which determine the properties of hydrated products. In the course of the research, the modification of ordinary Portland cement was performed by the suspension of multi-walled carbon nanotubes (MWCNTs), carbon black (CB) paste, and silica fume (SF). Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD) analysis, thermal analysis, and Fourier-transform infrared (FTIR) spectroscopy were used to study cement hydration products. The morphology of hardened cement paste depends on the chemical reactivity of additives, their geometry, and their genesis. The action mechanism of the inert carbon-based additives and pozzolanic silica fume were considered. The cement hydration products formed in the process of modification by both types of ultrafine additives are described. In the case of the modification of cement paste by inert MWCNTs and CB paste, the formation of cement hydration products on their surface without strong adhesion was observed, whereas in the case of the addition of SF separately and together with MWCNTs, the strong adhesion of additives and cement hydration products was noted.


2021 ◽  
Vol 325 ◽  
pp. 9-20
Author(s):  
Evaldas Serelis ◽  
Vitoldas Vaitkevicius

Glass is an amorphous material, which could be a good pozzolanic material and can be beneficial in compressive strength gain. However, if waste of glass powder has undesirable contaminations (aluminium, clay impurities, sulphates, etc.) it can negatively affect hydration process. In the research were used two types of waste glass (with and without harmful impurities). Waste glass shards were obtained from a local waste recycling plant and its properties were investigated in the Portland cement hydration process. Properties of waste glass were analysed by SEM, XRD test methods, pozzolanicity of glass powder was investigated by Chappelle test method. The hydration process of Portland cement was researched by the semi-adiabatic test method and XRD analysis. Properties of hardened cement paste was analysed by: density, flexural and compressive strength test methods The main aim of this research is to analyse waste glass, which after primary cleaning is not suitable for secondary reuse and investigate its suitability in cement-based systems.


2008 ◽  
Vol 400-402 ◽  
pp. 121-124
Author(s):  
Zong Hui Zhou ◽  
Ling Chao Lu ◽  
Xing Kai Gao ◽  
Xin Cheng

In this paper, preparation and mechanical properties of Alite-calcium barium sulphoaluminate (Alite-C2.75B1.25A3 ) cement concrete were studied. The results showed the compressive strength of Alite-C2.75B1.25A3 cement concrete was much higher than that of Portland cement concrete, especially the early-age compressive strength. The 24-hour compressive strength of Alite-C2.75B1.25A3 cement concrete could reach 22.81Mpa for w/c=0.45, 17.29Mpa for w/c=0.50 and 17.04Mpa for w/c=0.55 respectively. They were about 50 to 65 percent higher than those of Portland cement concrete. The 7-day compressive strength could reach about 80 to 90 percent of 28-day strength for Alite-C2.75B1.25A3 cement concrete. The 28-day strength could reach 55.85Mpa for w/c=0.45, 48.01Mpa for w/c=0.50 and 44.21Mpa for w/c=0.55 respectively. The results of SEM showed the interfaces between the hardened cement paste and aggregates in Alite-C2.75B1.25A3 cement concrete were more compact than those in Portland cement concrete. Distribution of particulate bulk was more uniformity and a majority of clinker particles was wrapped by hydrated gel in Alite-C2.75B1.25A3 concrete. And, the structure of Alite-C2.75B1.25A3 cement concrete was much more compact than that of Portland cement concrete.


2021 ◽  
Vol 283 ◽  
pp. 124632
Author(s):  
Junjie Zhang ◽  
Hongbo Tan ◽  
Xingyang He ◽  
Rixu Zhao ◽  
Jin Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document