hopf monoid
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

2020 ◽  
Vol 172 ◽  
pp. 105187
Author(s):  
Farid Aliniaeifard ◽  
Nathaniel Thiem
Keyword(s):  


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Jacob White

International audience We investigate quasisymmetric functions coming from combinatorial Hopf monoids. We show that these invariants arise naturally in Ehrhart theory, and that some of their specializations are Hilbert functions for relative simplicial complexes. This class of complexes, called forbidden composition complexes, also forms a Hopf monoid, thus demonstrating a link between Hopf algebras, Ehrhart theory, and commutative algebra. We also study various specializations of quasisymmetric functions.



10.37236/8740 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Jean-Christophe Aval ◽  
Théo Karaboghossian ◽  
Adrian Tanasa

In arXiv:1709.07504 Aguiar and Ardila give a Hopf monoid structure on hypergraphs as well as a general construction of polynomial invariants on Hopf monoids. Using these results, we define in this paper a new polynomial invariant on hypergraphs. We give a combinatorial interpretation of this invariant on negative integers which leads to a reciprocity theorem on hypergraphs. Finally, we use this invariant to recover well-known invariants on other combinatorial objects (graphs, simplicial complexes, building sets, etc) as well as the associated reciprocity theorems.



2020 ◽  
Vol 11 (4) ◽  
pp. 575-601
Author(s):  
Mariel Supina
Keyword(s):  


2014 ◽  
Vol 42 (1) ◽  
pp. 129-164 ◽  
Author(s):  
Scott Andrews
Keyword(s):  


2014 ◽  
Vol 66 (3) ◽  
pp. 481-504 ◽  
Author(s):  
Marcelo Aguiar ◽  
Swapneel Mahajan

AbstractCombinatorial structures that compose and decompose give rise to Hopf monoids in Joyal's category of species. The Hadamard product of two Hopf monoids is another Hopf monoid. We prove two main results regarding freeness of Hadamard products. The first one states that if one factor is connected and the other is free as a monoid, their Hadamard product is free (and connected). The second provides an explicit basis for the Hadamard product when both factors are free.The first main result is obtained by showing the existence of a one-parameter deformation of the comonoid structure and appealing to a rigidity result of Loday and Ronco that applies when the parameter is set to zero. To obtain the second result, we introduce an operation on species that is intertwined by the free monoid functor with theHadamard product. As an application of the first result, we deduce that the Boolean transform of the dimension sequence of a connected Hopf monoid is nonnegative.



2014 ◽  
Vol 40 (4) ◽  
pp. 903-938 ◽  
Author(s):  
Duff Baker-Jarvis ◽  
Nantel Bergeron ◽  
Nathaniel Thiem


2013 ◽  
Vol 65 (2) ◽  
pp. 241-265 ◽  
Author(s):  
Marcelo Aguiar ◽  
Aaron Lauve

AbstractFollowing Radford's proof of Lagrange's theorem for pointed Hopf algebras, we prove Lagrange‘s theorem for Hopf monoids in the category of connected species. As a corollary, we obtain necessary conditions for a given subspecies k of a Hopf monoid h to be a Hopf submonoid: the quotient of any one of the generating series of h by the corresponding generating series of k must have nonnegative coefficients. Other corollaries include a necessary condition for a sequence of nonnegative integers to be the dimension sequence of a Hopfmonoid in the formof certain polynomial inequalities and of a set-theoretic Hopf monoid in the form of certain linear inequalities. The latter express that the binomial transform of the sequence must be nonnegative.



2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Marcelo Aguiar ◽  
Aaron Lauve

International audience We prove Lagrange's theorem for Hopf monoids in the category of connected species. We deduce necessary conditions for a given subspecies $\textrm{k}$ of a Hopf monoid $\textrm{h}$ to be a Hopf submonoid: each of the generating series of $\textrm{k}$ must divide the corresponding generating series of $\textrm{k}$ in ℕ〚x〛. Among other corollaries we obtain necessary inequalities for a sequence of nonnegative integers to be the sequence of dimensions of a Hopf monoid. In the set-theoretic case the inequalities are linear and demand the non negativity of the binomial transform of the sequence. Nous prouvons le théorème de Lagrange pour les monoïdes de Hopf dans la catégorie des espèces connexes. Nous déduisons des conditions nécessaires pour qu'une sous-espèce $\textrm{k}$ d'un monoïde de Hopf $\textrm{h}$ soit un sous-monoïde de Hopf: chacune des séries génératrices de $\textrm{k}$ doit diviser la série génératrice correspondante de $\textrm{h}$ dans ℕ〚x〛. Parmi d'autres corollaires nous trouvons des inégalités nécessaires pour qu'une suite d'entiers soit la suite des dimensions d'un monoïde de Hopf. Dans le cas ensembliste les inégalités sont linéaires et exigent que la transformée binomiale de la suite soit non négative.



Sign in / Sign up

Export Citation Format

Share Document