discrete spacetime
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 2)

2020 ◽  
Author(s):  
Stephane Maes

Proving and constructing viable Yang Mills Gauge is a key concern for the Standard Model and an open problem. It has only be solved on lattices. Yet, gravity is not modeled in the Standard Model. We discuss that in a multi-fold universe where gravity emerges from entanglement effects, the spacetime is discrete (fractal with fractional dimensions, noncommutative and still Lorentz invariant). For any Lorentz invariant discrete spacetime, the lattice proofs and their lattice cell size independence completes the proof of the mass gap for Yang Mills Gauge theories. Continuous spacetime may or may not have a mass gap; but it does not matter if the real universe is discrete and Lorentz invariant.


2019 ◽  
Vol 36 (18) ◽  
pp. 185015 ◽  
Author(s):  
M Aghili ◽  
L Bombelli ◽  
B B Pilgrim
Keyword(s):  

2019 ◽  
Vol 7 ◽  
Author(s):  
Alexander I. Nesterov ◽  
Héctor Mata

2019 ◽  
Vol 99 (1) ◽  
Author(s):  
Todd A. Brun ◽  
Leonard Mlodinow
Keyword(s):  

Author(s):  
Hans Diel

Based on a local causal model of the dynamics of curved discrete spacetime, a causal model of quantum field theory in curved discrete spacetime is described. On the elementary level, space(-time) is assumed to consists of interconnected space points. Each space point is connected to a small discrete set of neighboring space points. Density distribution of the space points and the lengths of the space point connections depend on the distance from the gravitational sources. This leads to curved spacetime in accordance with general relativity. Dynamics of spacetime (i.e., the emergence of space and the propagation of space changes) dynamically assigns "in-connections" and "out-connections" to the affected space points. Emergence and propagation of quantum fields (including particles) are mapped to the emergence and propagation of space changes by utilizing identical paths of in/out-connections. Compatibility with standard quantum field theory (QFT) requests the adjustment of the QFT techniques (e.g., Feynman diagrams, Feynman rules, creation/annihilation operators), which typically apply to three in/out connections, to n > 3 in/out connections. In addition, QFT computation in position space has to be adapted to a curved discrete space-time.


Author(s):  
Hans Diel

Based on a local causal model of the dynamics of curved discrete spacetime, a causal model of quantum field theory in curved discrete spacetime is described. At the elementary level, space(-time) is assumed to consists of interconnected space points. Each space point is connected to a small discrete set of neighbor space points. Density distribution of the space points and the lengths of the space point connections depend on the distance from the gravitational sources. This leads to curved spacetime in accordance with general relativity. Dynamics of spacetime (i.e., the emergence of space and the propagation of space changes) dynamically assigns "in-connections" and "out-connections" to the affected space points. Emergence and propagation of quantum fields (including particles) are mapped to the emergence and propagation of space changes by utilizing identical paths of in/out-connections. Compatibility with standard quantum field theory (QFT) requests the adjustment of the QFT techniques (e.g., Feynman diagrams, Feynman rules, creation/annihilation operators), which typically apply to three in/out connections, to n > 3 in/out connections. In addition, QFT computation in position space has to be adapted to a curved discrete space-time.


Sign in / Sign up

Export Citation Format

Share Document