translational symmetry
Recently Published Documents


TOTAL DOCUMENTS

236
(FIVE YEARS 54)

H-INDEX

25
(FIVE YEARS 4)

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Kanghee Lee ◽  
Junho Park ◽  
Seojoo Lee ◽  
Soojeong Baek ◽  
Jagang Park ◽  
...  

Abstract A temporal boundary refers to a specific time at which the properties of an optical medium are abruptly changed. When light interacts with the temporal boundary, its spectral content can be redistributed due to the breaking of continuous time-translational symmetry of the medium where light resides. In this work, we use this principle to demonstrate, at terahertz (THz) frequencies, the resonance-enhanced spectral funneling of light coupled to a Fabry–Perot resonator with a temporal boundary mirror. To produce a temporal boundary effect, we abruptly increase the reflectance of a mirror constituting the Fabry–Perot resonator and, correspondingly, its quality factor in a step-like manner. The abrupt increase in the mirror reflectance leads to a trimming of the coupled THz pulse that causes the pulse to broaden in the spectral domain. Through this dynamic resonant process, the spectral contents of the input THz pulse are redistributed into the modal frequencies of the high-Q Fabry–Perot resonator formed after the temporal boundary. An energy conversion efficiency of up to 33% was recorded for funneling into the fundamental mode with a Fabry–Perot resonator exhibiting a sudden Q-factor change from 4.8 to 48. We anticipate that the proposed resonance-enhanced spectral funneling technique could be further utilized in the development of efficient mechanically tunable narrowband terahertz sources for diverse applications.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 63
Author(s):  
Paweł Sznajder ◽  
Bogdan Cichocki ◽  
Maria Ekiel-Jeżewska

We investigate qualitatively a uniform non-Brownian sedimenting suspension in a stationary state. As a base of our analysis we take the BBGKY hierarchy derived from the Liouville equation. We then show that assumption of the plasma-like screening relations can cancel some long-range terms in the hierarchy but it does not provide integrable solutions for correlation functions. This suggests breaking the translational symmetry of the system. Therefore a non-uniform structure can develop to suppress velocity fluctuations and make the range of correlations finite.


2022 ◽  
Vol 12 (1) ◽  
pp. 0-0

The protein molecules are considerate in the space of the highest dimension with a change in dimension with demand at the conformation of the molecules. It was shown that the widespread quasi-plane model of the Pouling protein structure do not reflect and even contradict the spatial structures of the protein in various conformations. It was found that the linear structures and folded structures of the protein in space of the highest dimension have translational symmetry. The elementary elements of protein translational symmetry were determined, their dimensions were calculated (9 for the linear structures and 23 for folded structures).


SPIN ◽  
2021 ◽  
Author(s):  
Shizhu Qiao

Magnon scatterings affect the performance of magnonic devices directly, and dynamic dipolar field (DDF) is crucial in the scattering potential. In this paper, a theoretical model of the DDF in low-dimensional magnetic systems is present, and simulations give the summation area to achieve good accuracy in the DDF calculation, though the dipolar field is a long-range interaction. Calculation in a finite-size thin film indicates that due to the breaking of translational symmetry, the DDF increases evidently in the borders and the corners. The DDF near the vertex of the thin film is several orders magnitude higher than that in the inside area, making the corners prominent in the magnon scatterings.


2021 ◽  
Vol 2021 (11) ◽  
pp. 114004
Author(s):  
Vincenzo Alba ◽  
Bruno Bertini ◽  
Maurizio Fagotti ◽  
Lorenzo Piroli ◽  
Paola Ruggiero

Abstract We give a pedagogical introduction to the generalized hydrodynamic approach to inhomogeneous quenches in integrable many-body quantum systems. We review recent applications of the theory, focusing in particular on two classes of problems: bipartitioning protocols and trap quenches, which represent two prototypical examples of broken translational symmetry in either the system initial state or post-quench Hamiltonian. We report on exact results that have been obtained for generic time-dependent correlation functions and entanglement evolution, and discuss in detail the range of applicability of the theory. Finally, we present some open questions and suggest perspectives on possible future directions.


2021 ◽  
Author(s):  
Dong-Ling Deng ◽  
Xu Zhang ◽  
Wenjie Jiang ◽  
Jinfeng Deng ◽  
Ke Wang ◽  
...  

Abstract Quantum many-body systems away from equilibrium host a rich variety of exotic phenomena that are forbidden by equilibrium thermodynamics. A prominent example is that of discrete time crystals [1-8], where time translational symmetry is spontaneously broken in periodically driven systems. Pioneering experiments have observed signatures of time crystalline phases with trapped ions [9,10], spins in nitrogen-vacancy centers [11-13], ultracold atoms [14,15], solid spin ensembles [16,17], and superconducting qubits [18-20]. Here, we report the observation of a distinct type of intrinsically non-equilibrium state of matter, a Floquet symmetry-protected topological phase, which is implemented through digital quantum simulation with an array of programmable superconducting qubits. Unlike the discrete time crystals reported in previous experiments, where spontaneous breaking of the discrete time translational symmetry occurs for local observables throughout the whole system, the Floquet symmetry-protected topological phase observed in our experiment breaks the time translational symmetry only at the boundaries and has trivial dynamics in the bulk. More concretely, we observe robust long-lived temporal correlations and sub-harmonic temporal response for the edge spins over up to 40 driving cycles using a circuit whose depth exceeds 240. We demonstrate that the sub-harmonic response is independent of whether the initial states are random product states or symmetry-protected topological states, and experimentally map out the phase boundary between the time crystalline and thermal phases. Our work paves the way to exploring novel non-equilibrium phases of matter emerging from the interplay between topology and localization as well as periodic driving, with current noisy intermediate-scale quantum processors [21].


2021 ◽  
Vol 118 (42) ◽  
pp. e2107477118
Author(s):  
Jiseok Gim ◽  
Alden Koch ◽  
Laura M. Otter ◽  
Benjamin H. Savitzky ◽  
Sveinung Erland ◽  
...  

A pearl’s distinguished beauty and toughness are attributable to the periodic stacking of aragonite tablets known as nacre. Nacre has naturally occurring mesoscale periodicity that remarkably arises in the absence of discrete translational symmetry. Gleaning the inspiring biomineral design of a pearl requires quantifying its structural coherence and understanding the stochastic processes that influence formation. By characterizing the entire structure of pearls (∼3 mm) in a cross-section at high resolution, we show that nacre has medium-range mesoscale periodicity. Self-correcting growth mechanisms actively remedy disorder and topological defects of the tablets and act as a countervailing process to long-range disorder. Nacre has a correlation length of roughly 16 tablets (∼5.5 µm) despite persistent fluctuations and topological defects. For longer distances (>25 tablets , ∼8.5 µm), the frequency spectrum of nacre tablets follows f−1.5 behavior, suggesting that growth is coupled to external stochastic processes—a universality found across disparate natural phenomena, which now includes pearls.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1834
Author(s):  
Mikhail A Osipov ◽  
Maxim V. Gorkunov ◽  
Alexander A. Antonov

A molecular-statistical theory of coil–rod–coil triblock copolymers with orientationally ordered rod-like fragments has been developed using the density functional approach. An explicit expression for the free energy has been obtained in terms of the direct correlation functions of the reference disordered phase, the Flory–Huggins parameter and the potential of anisotropic interaction between rigid rods. The theory has been used to derive several phase diagrams and to calculate numerically orientational and translational order parameter profiles for different polymer architecture as a function of the Flory–Huggins parameter, which specifies the short-range repulsion and as functions of temperature. In triblock copolymers, the nematic–lamellar transition is accompanied by the translational symmetry breaking, which can be caused by two different microscopic mechanisms. The first mechanism resembles a low dimensional crystallization and is typical for conventional smectic liquid crystals. The second mechanism is related to the repulsion between rod and coil segments and is typical for block copolymers. Both mechanisms are analyzed in detail as well as the effects of temperature, coil fraction and the triblock asymmetry on the transition into the lamellar phase.


Author(s):  
Il Hwan Kim ◽  
Kye Ryong Sin ◽  
Jong Ok Pak ◽  
Il Hun Kim ◽  
Kum Ok Jang ◽  
...  

The concepts of `wavevector star channel' and `wavevector star channel group' are newly defined, which allow the effective study of phase transitions considering directly the translational symmetry breaking in crystals. A method is suggested by which the wavevector star channels can be found using the image of the representation of the translational group. According to this method, the wavevector star channels are found for the 80 Lifschitz stars in the reciprocal lattice. The wavevector star channel group is defined as the set of symmetry elements of the parent phase which leave the star channel invariant, and the wavevector star channel groups with one, two, three and four arms are calculated. It is shown that the complicated symmetry changes in the pyroelectric crystal Pb1−x Ca x TiO3 (PCT) can be described using the new five-component reducible order parameter transformed according to the representation of the wavevector star channel group, rather than the nine-component one based on the theory of the full irreducible representation of the space group.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Takuya Hirose ◽  
Nobuhito Maru

Abstract We propose a new inflation scenario in flux compactification, where a zero mode scalar field of extra components of the higher dimensional gauge field is identified with an inflaton. The scalar field is a pseudo Nambu-Goldstone boson of spontaneously broken translational symmetry in compactified spaces. The inflaton potential is non-local and finite, which is protected against the higher dimensional non-derivative local operators by quantum gravity corrections thanks to the gauge symmetry in higher dimensions and the shift symmetry originated from the translation in extra spaces. We give an explicit inflation model in a six dimensional scalar QED, which is shown to be consistent with Planck 2018 data.


Sign in / Sign up

Export Citation Format

Share Document