scholarly journals Progress on Proving the Mass gap for Yang Mills and Gravity (Maybe it’s already proven…)

2020 ◽  
Author(s):  
Stephane Maes

Proving and constructing viable Yang Mills Gauge is a key concern for the Standard Model and an open problem. It has only be solved on lattices. Yet, gravity is not modeled in the Standard Model. We discuss that in a multi-fold universe where gravity emerges from entanglement effects, the spacetime is discrete (fractal with fractional dimensions, noncommutative and still Lorentz invariant). For any Lorentz invariant discrete spacetime, the lattice proofs and their lattice cell size independence completes the proof of the mass gap for Yang Mills Gauge theories. Continuous spacetime may or may not have a mass gap; but it does not matter if the real universe is discrete and Lorentz invariant.

2011 ◽  
Vol 26 (24) ◽  
pp. 4251-4285 ◽  
Author(s):  
MARTIN KOBER

According to the introduction of a minimal length to quantum field theory, which is directly related to a generalized uncertainty principle, the implementation of the gauge principle becomes much more intricated. It has been shown in another paper how gauge theories have to be extended in general, if there is assumed the existence of a minimal length. In this paper this generalization of the description of gauge theories is applied to the case of Yang–Mills theories with gauge group SU(N) to consider especially the application to the electroweak theory as it appears in the Standard Model. The modifications of the lepton-, Higgs- and gauge field sector of the extended Lagrangian of the electroweak theory maintaining local gauge invariance under SU(2)L ⊗ U(1)Y transformations are investigated. There appear additional interaction terms between the leptons or the Higgs particle respectively with the photon and the W- and Z-bosons as well as additional self-interaction terms of these gauge bosons themselves. It is remarkable that in the quark sector where the full gauge group of the Standard Model, SU(3)c ⊗ SU(2)L ⊗ U(1)Y, has to be considered there arise coupling terms between the gluons und the W- and Z-bosons which means that the electroweak theory is not separated from quantum chromodynamics anymore.


2014 ◽  
Vol 92 (12) ◽  
pp. 1501-1527 ◽  
Author(s):  
Carlos Castro

A Clifford Cl(5, C) unified gauge field theory formulation of conformal gravity and U(4) × U(4) × U(4) Yang–Mills in 4D, is reviewed along with its implications for the Pati–Salam (PS) group SU(4) × SU(2)L × SU(2)R, and trinification grand unified theory models of three fermion generations based on the group SU(3)C × SU(3)L × SU(3)R. We proceed with a brief review of a unification program of 4D gravity and SU(3) × SU(2) × U(1) Yang–Mills emerging from 8D pure quaternionic gravity. A realization of E8 in terms of the Cl(16) = Cl(8) ⊗ Cl(8) generators follows, as a preamble to F. Smith’s E8 and Cl(16) = Cl(8) ⊗ Cl(8) unification model in 8D. The study of chiral fermions and instanton backgrounds in CP2 and CP3 related to the problem of obtaining three fermion generations is thoroughly studied. We continue with the evaluation of the coupling constants and particle masses based on the geometry of bounded complex homogeneous domains and geometric probability theory. An analysis of neutrino masses, Cabbibo–Kobayashi–Maskawa quark-mixing matrix parameters, and neutrino-mixing matrix parameters follows. We finalize with some concluding remarks about other proposals for the unification of gravity and the Standard Model, like string, M, and F theories and noncommutative and nonassociative geometry.


2019 ◽  
Vol 16 (1) ◽  
pp. 391-478
Author(s):  
Antonio Puccini

With this work, we try to answer 3 fundamental questions that have plagued mathematicians and physicists for several decades. As known, the spontaneous symmetry breaking (SSB) and the Brout-Englert-Higgs Mechanism (BEH-M) solved the Yang-Mills Mass Gap Problem. However, various mathematicians, even prestigious ones, consider the basic assumptions of the gauge theories to be wrong, as well as in conflict with the experimental evidences and in clear disagreement with the facts, distorcing the physical reality itself. Likewise, the Quantum Fields Theory (QFT) is mathematically inconsistent, adopting a mathematical structure somewhat complicated and arbitrary, which does not satisfy the strong demands for coherence. The weakest point of the gauge theories, in our opinion, consists in imposing that all the particles must be free of an intrinsic mass (massless). On the contrary, even for the particle considered universally massless, i.e. the photon (P), our calculations show a dynamic-mass, a push-momentum (p) of 1.325⋅10−22[g⋅cm/s]. That is, an optic P hits a particle with an energy-mass greater than 100 protons rest-mass’. It is clear that if we replaced this value with the full value of the P inserted in the equations of the Perturbation Theory, QFT and Yang-Mills theories, all divergences, that is all zeroes and infinities, would suddenly disappear. Consequently, the limits imposed by the SSB disappear so that there is no longer any need to deny the mass to the Nuclear Forces bosons, including the Yang-Mills b quantum. Still, the photons (Ps) are the basis of the quantum vacuum energy, which is distributed ubiquitously, also within the intra-atomic spaces. It is likely that a lot of Ps were trapped in atomic nuclei (at the time of nucleosynthesis) and among quarks (Qs) at the time of primordial nucleonic synthesis. We believe that when Qs get too close to each other, till repelling each other (Asymptotic Freedom of Qs), this may depend on the presence of a multitude of Ps that, no further compressible, begin to exert an antigravity repulsive force, just as a Dark Energy. This limit to Compressibility (C) of the radiation is shown in equation: PV 4/3 = C, where V is the volume, and P is the Pressure of the photonic gas. Quantum Mechanics plays a crucial role, through the Uncertainty Principle, in the spatial Confinement of Qs, which have remained eternally confined in an extremely narrow space by the  Strong Interaction, but in primis by the very short range (likely ≈8.44[±1.44]⋅10-16cm) and lifetime of gluon(G) which, from our calculations, is ≈2.73[±0.564]⋅10-26 sec. Therefore, a new parameter may be added to the Qs and G spatial Confinement: the b quantum or G Temporal Confinement (and of their Colours and anti-Colours). 


2020 ◽  
Vol 63 (8) ◽  
pp. 1259-1262
Author(s):  
Xi-Jun Lin ◽  
Lin Sun ◽  
Zhen Yan ◽  
Xiaoshuai Zhang ◽  
Haipeng Qu

Abstract Rastegari et al. recently proposed a certificateless signcryption (CL-SC) scheme. They claimed that their scheme is the first secure CL-SC scheme, which captures the known session-specific temporary information security (KSSTIS), in the standard model. In this paper, we point out that their scheme is insecure, which implies that how to construct a secure CL-SC scheme with KSSTIS in the standard model is still an open problem.


1997 ◽  
Vol 12 (06) ◽  
pp. 1161-1171 ◽  
Author(s):  
Dimitra Karabali ◽  
V. P. Nair

In terms of a gauge-invariant matrix parametrization of the fields, we give an analysis of how the mass gap could arise in non-Abelian gauge theories in two spatial dimensions.


2016 ◽  
Vol 31 (20n21) ◽  
pp. 1650111 ◽  
Author(s):  
Pavel Yu. Moshin ◽  
Alexander A. Reshetnyak

We continue our research[Formula: see text] and extend the class of finite BRST–anti-BRST transformations with odd-valued parameters [Formula: see text], [Formula: see text], introduced in these works. In doing so, we evaluate the Jacobians induced by finite BRST–anti-BRST transformations linear in functionally-dependent parameters, as well as those induced by finite BRST–anti-BRST transformations with arbitrary functional parameters. The calculations cover the cases of gauge theories with a closed algebra, dynamical systems with first-class constraints, and general gauge theories. The resulting Jacobians in the case of linearized transformations are different from those in the case of polynomial dependence on the parameters. Finite BRST–anti-BRST transformations with arbitrary parameters induce an extra contribution to the quantum action, which cannot be absorbed into a change of the gauge. These transformations include an extended case of functionally-dependent parameters that implies a modified compensation equation, which admits nontrivial solutions leading to a Jacobian equal to unity. Finite BRST–anti-BRST transformations with functionally-dependent parameters are applied to the Standard Model, and an explicit form of functionally-dependent parameters [Formula: see text] is obtained, providing the equivalence of path integrals in any 3-parameter [Formula: see text]-like gauges. The Gribov–Zwanziger theory is extended to the case of the Standard Model, and a form of the Gribov horizon functional is suggested in the Landau gauge, as well as in [Formula: see text]-like gauges, in a gauge-independent way using field-dependent BRST–anti-BRST transformations, and in [Formula: see text]-like gauges using transverse-like non-Abelian gauge fields.


Author(s):  
Michael Kachelriess

The axial anomaly is derived both from the non-invariance of the path-integral measure under UA(1) transformations and calculations of specific triangle diagrams. It is demonstrated that the anomalous terms are cancelled in the electroweak sector of the standard model, if the electric charge of all fermions adds up to zero. The CP-odd term F̃μν‎Fμν‎ introduced by the axial anomaly is a gauge-invariant renormalisable interaction which is also generated by instanton transitions between Yang–Mills vacua with different winding numbers. The Peceei–Quinn symmetry is discussed as a possible explanation why this term does not contribute to the QCD action.


Sign in / Sign up

Export Citation Format

Share Document