molding compounds
Recently Published Documents


TOTAL DOCUMENTS

408
(FIVE YEARS 43)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 2 (4) ◽  
pp. 976-995
Author(s):  
Mehmet Haybat ◽  
Thomas Guenther ◽  
Romit Kulkarni ◽  
Serhat Sahakalkan ◽  
Tobias Grözinger ◽  
...  

Electronic devices and their associated sensors are exposed to increasing mechanical, thermal and chemical stress in modern applications. In many areas of application, the electronics are completely encapsulated with thermosets in a single process step using injection molding technology, especially with epoxy molding compounds (EMC). The implementation of the connection of complete systems for electrical access through a thermoset encapsulation is of particular importance. In practice, metal pin contacts are used for this purpose, which are encapsulated together with the complete system in a single injection molding process step. However, this procedure contains challenges because the interface between the metallic pins and the plastic represents a weak point for reliability. In order to investigate the reliability of the interface, in this study, metallic pin contacts made of copper-nickel-tin alloy (CuNiSn) and bronze (CuSn6) are encapsulated with standard EMC materials. The metal surfaces made of CuNiSn are further coated with silver (Ag) and tin (Sn). An injection molding tool to produce test specimens is designed and manufactured according to the design rules of EMC processing. The reliability of the metal-plastic interfaces are investigated by means of shear and leak tests. The results of the investigations show that the reliability of the metal-plastic joints can be increased by using different material combinations.


Author(s):  
Anthony J. Favaloro ◽  
Benjamin R. Denos ◽  
Drew E. Sommer ◽  
Rebecca A. Cutting ◽  
Johnathan E. Goodsell

Author(s):  
Maxime Argoud ◽  
Raphael Eleouet ◽  
Jerome Dechamp ◽  
Nacima Allouti ◽  
Laurent Pain ◽  
...  

2021 ◽  
Vol 5 (5) ◽  
pp. 127
Author(s):  
Robert Maertens ◽  
Wilfried V. Liebig ◽  
Peter Elsner ◽  
Kay A. Weidenmann

For a newly developed thermoset injection molding process, glass fiber-reinforced phenolic molding compounds with fiber contents between 0 wt% and 60 wt% were compounded. To achieve a comparable remaining heat of the reaction in all compound formulations, the specific mechanical energy input (SME) during the twin-screw extruder compounding process was used as a control parameter. By adjusting the extruder screw speed and the material throughput, a constant SME into the resin was targeted. Validation measurements using differential scanning calorimetry showed that the remaining heat of the reaction was higher for the molding compounds with low glass fiber contents. It was concluded that the SME was not the only influencing factor on the resin crosslinking progress during the compounding. The material temperature and the residence time changed with the screw speed and throughput, and most likely influenced the curing. However, the SME was one of the major influence factors, and can serve as an at-line control parameter for reactive compounding processes. The mechanical characterization of the test specimens revealed a linear improvement in tensile strength up to a fiber content of 40–50 wt%. The unnotched Charpy impact strength at a 0° orientation reached a plateau at fiber fractions of approximately 45 wt%.


Sign in / Sign up

Export Citation Format

Share Document