reference tissue model
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
pp. 0271678X2110652
Author(s):  
Joseph B Mandeville ◽  
Michael A Levine ◽  
John T Arsenault ◽  
Wim Vanduffel ◽  
Bruce R Rosen ◽  
...  

We report a novel forward-model implementation of the full reference tissue model (fFTRM) that addresses the fast-exchange approximation employed by the simplified reference tissue model (SRTM) by incorporating a non-zero dissociation time constant from the specifically bound compartment. The forward computational approach avoided errors associated with noisy and nonorthogonal basis functions using an inverse linear model. Compared to analysis by a multilinear single-compartment reference tissue model (MRTM), fFTRM provided improved accuracy for estimation of binding potentials at early times in the scan, with no worse reproducibility across sessions. To test the model’s ability to identify small focal changes in binding potential using a within-scan challenge, we employed a nonhuman primate model of focal dopamine release elicited by deep brain microstimulation remote to ventral striatum (VST) during imaging by simultaneous PET and fMRI. The new model reported an unambiguously lateralized response in VST consistent with fMRI, whereas the MRTM-derived response was not lateralized and was consistent with simulations of model bias. The proposed model enabled better accuracy in PET [11C]raclopride displacement studies and may also facilitate challenges sooner after injection, thereby recovering some sensitivity lost to radioactive decay of the PET tracer.


Author(s):  
Daniele Bertoglio ◽  
Jeroen Verhaeghe ◽  
Alan Miranda ◽  
Leonie Wyffels ◽  
Sigrid Stroobants ◽  
...  

Abstract Purpose Our aim in this study was to compare different non-invasive pharmacokinetic models and assess test–retest reproducibility of the radioligand [11C]SCH23390 for the quantification of dopamine D1-like receptor (D1R) in both wild-type (WT) mice and heterozygous (HET) Q175DN mice as Huntington’s disease (HD) model. Procedures Adult WT (n = 9) and HET (n = 14) mice underwent a 90-min [11C]SCH23390 positron emission tomography (PET) scan followed by computed tomography (CT) to evaluate the pharmacokinetic modelling in healthy and diseased conditions. Additionally, 5 WT mice and 7 HET animals received a second [11C]SCH23390 PET scan for test–retest reproducibility. Parallel assessment of the simplified reference tissue model (SRTM), the multilinear reference tissue model (MRTM) and the Logan reference tissue model (Logan Ref) using the striatum as a receptor-rich region and the cerebellum as a receptor-free (reference) region was performed to define the most suitable method for regional- and voxel-based quantification of the binding potential (BPND). Finally, standardised uptake value ratio (SUVR-1) was assessed as a potential simplified measurement. Results For all models, we measured a significant decline in dopamine D1R density (e.g. SRTM = − 38.5 ± 5.0 %, p < 0.0001) in HET mice compared to WT littermates. Shortening the 90-min scan duration resulted in large underestimation of striatal BPND in both WT mice (SRTM 60 min: − 17.7 ± 2.8 %, p = 0.0078) and diseased HET (SRTM 60 min: − 13.1 ± 4.1 %, p = 0.0001). Striatal BPND measurements were very reproducible with an average test–retest variability below 5 % when using both MRTM and SRTM. Parametric BPND maps generated with SRTM were highly reliable, showing nearly perfect agreement to the regional analysis (r2 = 0.99, p < 0.0001). Finally, SRTM provided the most accurate estimate for relative tracer delivery R1 with both regional- and voxel-based analyses. SUVR-1 at different time intervals were not sufficiently reliable when compared to BPND (r2 < 0.66). Conclusions Ninety-minute acquisition and the use of SRTM for pharmacokinetic modelling is recommended. [11C]SCH23390 PET imaging demonstrates optimal characteristics for the study of dopamine D1R density in models of psychiatric and neurological disorders as exemplified in the Q175DN mouse model of HD.


2019 ◽  
Vol 40 (4) ◽  
pp. 895-903 ◽  
Author(s):  
Thomas Koopman ◽  
Niels Verburg ◽  
Petra JW Pouwels ◽  
Pieter Wesseling ◽  
Otto S Hoekstra ◽  
...  

Quantitative parametric images of O-(2-[18F]fluoroethyl)-L-tyrosine kinetics in diffuse gliomas could be used to improve glioma grading, tumour delineation or the assessment of the uptake distribution of this positron emission tomography tracer. In this study, several parametric images and tumour-to-normal maps were compared in terms of accuracy of region averages (when compared to results from nonlinear regression of a reversible two-tissue compartment plasma input model) and image noise using 90 min of dynamic scan data acquired in seven patients with diffuse glioma. We included plasma input methods (the basis function implementation of the single-tissue compartment model, spectral analysis and Logan graphical analysis) and reference tissue methods (basis function implementations of the simplified reference tissue model, variations of the multilinear reference tissue model and non-invasive Logan graphical analysis) as well as tumour-to-normal ratio maps at three intervals. (Non-invasive) Logan graphical analysis provided volume of distribution maps and distribution volume ratio maps with the lowest level of noise, while the basis function implementations provided the best accuracy. Tumour-to-normal ratio maps provided better results if later interval times were used, i.e. 60–90 min instead of 20–40 min, leading to lower bias (2.9% vs. 10.8%, respectively) and less noise (12.8% vs. 14.4%).


NeuroImage ◽  
2016 ◽  
Vol 139 ◽  
pp. 405-414 ◽  
Author(s):  
Joseph B. Mandeville ◽  
Christin Y.M. Sander ◽  
Hsiao-Ying Wey ◽  
Jacob M. Hooker ◽  
Hanne D. Hansen ◽  
...  

2016 ◽  
Vol 37 (3) ◽  
pp. 866-876
Author(s):  
Isadora L Alves ◽  
Antoon TM Willemsen ◽  
Rudi A Dierckx ◽  
Ana Maria M da Silva ◽  
Michel Koole

Receptor occupancy studies performed with PET often require time-consuming dynamic imaging for baseline and post-dose scans. Shorter protocol approximations based on standard uptake value ratios have been proposed. However, such methods depend on the time-point chosen for the quantification and often lead to overestimation and bias. The aim of this study was to develop a shorter protocol for the quantification of post-dose scans using a dual time-point approximation, which employs kinetic parameters from the baseline scan. Dual time-point was evaluated for a [11C]raclopride PET dose occupancy study with the D2 antagonist JNJ-37822681, obtaining estimates for binding potential and receptor occupancy. Results were compared to standard simplified reference tissue model and standard uptake value ratios-based estimates. Linear regression and Bland–Altman analysis demonstrated excellent correlation and agreement between dual time-point and the standard simplified reference tissue model approach. Moreover, the stability of dual time-point-based estimates is shown to be independent of the time-point chosen for quantification. Therefore, a dual time-point imaging protocol can be applied to post-dose [11C]raclopride PET scans, resulting in a significant reduction in total acquisition time while maintaining accuracy in the quantification of both the binding potential and the receptor occupancy.


2015 ◽  
Vol 35 (12) ◽  
pp. 2098-2108 ◽  
Author(s):  
Seongho Seo ◽  
Su J Kim ◽  
Yu K Kim ◽  
Jee-Young Lee ◽  
Jae M Jeong ◽  
...  

In recent years, several linearized model approaches for fast and reliable parametric neuroreceptor mapping based on dynamic nuclear imaging have been developed from the simplified reference tissue model (SRTM) equation. All the methods share the basic SRTM assumptions, but use different schemes to alleviate the effect of noise in dynamic-image voxels. Thus, this study aimed to compare those approaches in terms of their performance in parametric image generation. We used the basis function method and MRTM2 (multilinear reference tissue model with two parameters), which require a division process to obtain the distribution volume ratio (DVR). In addition, a linear model with the DVR as a model parameter (multilinear SRTM) was used in two forms: one based on linear least squares and the other based on extension of total least squares (TLS). Assessment using simulated and actual dynamic [11C]ABP688 positron emission tomography data revealed their equivalence with the SRTM, except for different noise susceptibilities. In the DVR image production, the two multilinear SRTM approaches achieved better image quality and regional compatibility with the SRTM than the others, with slightly better performance in the TLS-based method.


Sign in / Sign up

Export Citation Format

Share Document