pancreas segmentation
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 77)

H-INDEX

12
(FIVE YEARS 4)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Meiyu Li ◽  
Fenghui Lian ◽  
Chunyu Wang ◽  
Shuxu Guo

Abstract Background A novel multi-level pyramidal pooling residual U-Net with adversarial mechanism was proposed for organ segmentation from medical imaging, and was conducted on the challenging NIH Pancreas-CT dataset. Methods The 82 pancreatic contrast-enhanced abdominal CT volumes were split via four-fold cross validation to test the model performance. In order to achieve accurate segmentation, we firstly involved residual learning into an adversarial U-Net to achieve a better gradient information flow for improving segmentation performance. Then, we introduced a multi-level pyramidal pooling module (MLPP), where a novel pyramidal pooling was involved to gather contextual information for segmentation, then four groups of structures consisted of a different number of pyramidal pooling blocks were proposed to search for the structure with the optimal performance, and two types of pooling blocks were applied in the experimental section to further assess the robustness of MLPP for pancreas segmentation. For evaluation, Dice similarity coefficient (DSC) and recall were used as the metrics in this work. Results The proposed method preceded the baseline network 5.30% and 6.16% on metrics DSC and recall, and achieved competitive results compared with the-state-of-art methods. Conclusions Our algorithm showed great segmentation performance even on the particularly challenging pancreas dataset, this indicates that the proposed model is a satisfactory and promising segmentor.


2021 ◽  
Author(s):  
Ruijie Wang ◽  
Xudong Liu ◽  
Huikai Shao ◽  
Qiling Li ◽  
Dexing Zhong

2021 ◽  
Author(s):  
Sang-Heon Lim ◽  
Young Jae Kim ◽  
Yeon-Ho Park ◽  
Doojin Kim ◽  
Kwang Gi Kim ◽  
...  

Abstract Pancreas segmentation is necessary for observing lesions, analyzing anatomical structures, and predicting patient prognosis. Therefore, various studies have designed segmentation models based on convolutional neural networks for pancreas segmentation. However, the deep learning approach is limited by a lack of data, and studies conducted on a large computed tomography dataset are scarce. Therefore, this study aims to perform deep-learning-based semantic segmentation on 1,006 participants and evaluate the automatic segmentation performance of the pancreas via four individual three-dimensional segmentation networks. In this study, we performed internal validation with 1,006 patients and external validation using the Cancer Imaging Archive (TCIA) pancreas dataset. We obtained mean precision, recall, and dice similarity coefficients of 0.869, 0.842, and 0.842, respectively, for internal validation via a relevant approach among the four deep learning networks. Using the external dataset, the deep learning network achieved mean precision, recall, and dice similarity coefficients of 0.779, 0.749, and 0.735, respectively. We expect that generalized deep-learning-based systems can assist clinical decisions by providing accurate pancreatic segmentation and quantitative information of the pancreas for abdominal computed tomography.


2021 ◽  
pp. 102232
Author(s):  
Taiping Qu ◽  
Xiheng Wang ◽  
Chaowei Fang ◽  
Li Mao ◽  
Juan Li ◽  
...  

2021 ◽  
Author(s):  
Weijia Li ◽  
Xing Wu ◽  
Yangjinan Hu ◽  
Lulu Wang ◽  
Zhongshi He ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Meixiang Huang ◽  
Chongfei Huang ◽  
Jing Yuan ◽  
Dexing Kong

Accurate pancreas segmentation from 3D CT volumes is important for pancreas diseases therapy. It is challenging to accurately delineate the pancreas due to the poor intensity contrast and intrinsic large variations in volume, shape, and location. In this paper, we propose a semiautomated deformable U-Net, i.e., DUNet for the pancreas segmentation. The key innovation of our proposed method is a deformable convolution module, which adaptively adds learned offsets to each sampling position of 2D convolutional kernel to enhance feature representation. Combining deformable convolution module with U-Net enables our DUNet to flexibly capture pancreatic features and improve the geometric modeling capability of U-Net. Moreover, a nonlinear Dice-based loss function is designed to tackle the class-imbalanced problem in the pancreas segmentation. Experimental results show that our proposed method outperforms all comparison methods on the same NIH dataset.


Sign in / Sign up

Export Citation Format

Share Document