guanidinium nitrate
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 2)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 33 (8) ◽  
pp. 1905-1910
Author(s):  
S. Thangarasu ◽  
V. Siva ◽  
A. Shameem ◽  
A. Murugan ◽  
S. Athimoolam ◽  
...  

Guanidinium nitrate, a non-linear optical material has been systematically studied through quantum chemical (density functional theory and Hartree Fock) methods. Studies on Mulliken charge, Frontier molecular orbitals (FMOs) and hyperpolarizability analyses have been performed. The Mulliken population analyses were carried out for the optimized molecular geometry by HF and B3LYP methods with 6-311++G(d,p) levels. The molecular orbital parameters of guanidinium nitrate have been calculated by FMO analysis. Frontier molecular orbital (FMO) analysis indicates the electron delocalization on the guanidinium nitrate and also its low value of energy gap indicates electron transfer. Optical property has been investigated by time-dependent density functional theory (TD-DFT) calculation. The second-order hyperpolarizability value of the ion pairs is much greater than urea, which confirms the good NLO nature of guanidinium nitrate.


2017 ◽  
Vol 131 (1) ◽  
pp. 427-441 ◽  
Author(s):  
Anand Sankaranarayanan ◽  
Lovely Mallick ◽  
Neeraj R. Kumbhakarna

Author(s):  
Tristan H. Lambert

The reduction of azobenzene 1 with catalyst 2 was reported (J. Am. Chem. Soc. 2012, 134, 11330) by Alexander T. Radosevich at Pennsylvania State University, representing a unique example of a nontransition metal-based two-electron redox catalysis platform. Wolfgang Kroutil at the University of Graz found (Angew. Chem. Int. Ed. 2012, 51, 6713) that diketone 4 was converted to piperidinium 5 with very high stereoselectivity using a transaminase followed by reduction over Pd/C. Dennis P. Curran at the University of Pittsburgh reported (Org. Lett. 2012, 14, 4540) that NHC-borane 7 is a convenient reducing agent for aldehydes and ketones, showing selectivity for the former as in the monoreduction of 6 to 8. A catalytic reduction of esters to ethers with Fe3(CO)12 and TMDS, as in the conversion of 9 to 10, was developed (Chem. Commun. 2012, 48, 10742) by Matthias Beller at the Leibniz-Institute for Catalysis. Meanwhile, iridium catalysis was used (Angew. Chem. Int. Ed. 2012, 51, 9422) by Maurice Brookhart at the University of North Carolina at Chapel Hill for the reduction of esters to aldehydes with diethylsilane (e.g., 11 to 12). As an impressive example of selective reduction, Ohyun Kwon at UCLA reported (Org. Lett. 2012, 14, 4634) the conversion of ester 13 to aldehyde 14, leaving the malonate moiety intact. The cobalt complex 16 was found (Angew. Chem. Int. Ed. 2012, 51, 12102) by Susan K. Hanson at Los Alamos National Laboratory to be an effective catalyst for C=O, C=N, and C=C bond hydrogenation, including the conversion of alkene 15 to 17. The use of frustrated Lewis pair catalysis for the low-temperature hydrogenation of alkenes such as 18 was developed (Angew. Chem. Int. Ed. 2012, 51, 10164) by Stefan Grimme at the University of Bonn and Jan Paradies the Karlsruhe Institute of Technology. Guanidinium nitrate was found (Chem. Commun. 2012, 48, 6583) by Kandikere Ramaiah Prabhu at the Indian Institute of Science to catalyze the hydrazine-based reduction of alkenes such as 20. The hydrogenation of thiophenes is difficult for a number of reasons, but now Frank Glorius at the University of Münster has developed (J. Am. Chem. Soc. 2012, 134, 15241) an effective system for the highly enantioselective catalytic hydrogenation of thiophenes and benzothiophenes, including 22.


ChemInform ◽  
2012 ◽  
Vol 43 (20) ◽  
pp. no-no
Author(s):  
Arash Ghorbani-Choghamarani ◽  
Hamid Goudarziafshar ◽  
Mohsen Nikoorazm ◽  
Zahra Naseri

2011 ◽  
Vol 22 (12) ◽  
pp. 1431-1434 ◽  
Author(s):  
Arash Ghorbani-Choghamarani ◽  
Hamid Goudarziafshar ◽  
Mohsen Nikoorazm ◽  
Zahra Naseri

Sign in / Sign up

Export Citation Format

Share Document