mulliken charge
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 36)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Zhiqiang Huang ◽  
Shiyong Zhang ◽  
Vladimir E. Burov ◽  
Hongling Wang ◽  
Rukuan Liu ◽  
...  

Abstract No single element has exerted such a deep influence on social organization of mankind as iron. Magnetite is concentrated by froth flotation and used as a raw material to produce iron. However, the conventional surfactants used in the flotation process often lead to the weak collecting performance due to their analogous alkyl hydrophobic group. Here, we report a new trisiloxane surfactant N-(β-aminoethyl)-γ-aminopropyltrisiloxane (AAT) in magnetite flotation, which was compared with the traditional collector dodecylamine (DA). The flotation test results showed that AAT had excellent collecting ability and selectivity for quartz against magnetite. Magnetite concentrate with TFe recovery of 84.79%, TFe grade of 68.84% and SiO2 grade of 6.15% was obtained by using 150 g/t AAT. Density functional theory calculations suggested reactive site of AAT was cationic –CH2N+H3 group, and AAT showed a higher positive grouping Mulliken charge and chemical reactivity that may promote its flotation performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xinmao Qin ◽  
Wanjun Yan ◽  
Dongxiang Li ◽  
Zhongzheng Zhang ◽  
Shaobo Chen

A first-principles study was performed to investigate the adsorption properties of gas molecules (CO, CO2, NO, and NO2) on carbon- (C-), nitrogen- (N-), and oxygen-doped (O) borophene. The adsorption energies, adsorption configurations, Mulliken charge population, surface work functions, and density of states (DOS) of the most stable doped borophene/gas-molecule configurations were calculated, and the interaction mechanisms between the gas molecules and the doped borophene were further analyzed. The results indicated that most of the gas molecules exhibited strong chemisorption at the VB site (the center of valley bottom B–B bond) of the doped borophene (compared to pristine borophene). Electronic property analysis of the C-doped borophene/CO2 and the NO2 adsorption system revealed that there were numerous charge transfers from the C-doped borophene to the CO2 and NO2 molecules. This indicated that C-doped borophene was an electron donor, and the CO2 and NO2 molecules served as electron acceptors. In contrast to variations in the adsorption energies, electronic properties, and surface work functions of the different gas, C-, N-, and O-doped borophene adsorption systems, we concluded that the C-, N-, and O-doped borophene materials will improve the sensitivity of CO, CO2, and NO2 molecule; this improvement of adsorption properties indicated that C-, N-, and O-doped borophene materials are excellent candidates for surface work functions transistor to detect gas molecules.


Inorganics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 80
Author(s):  
Li Zhou ◽  
Huadong Zhu ◽  
Wen Zeng

Sulphide gas is an impurity that affects the quality of natural gas, which needs reasonable storage and transportation. In this work, we investigated the adsorption structure and electronic behavior of hydrogen sulfide (H2S), carbonyl sulfur (COS), and methyl mercaptan (CH3SH) on sulphide gas molecules on pure and vacant α-Fe2O3(001) surfaces by density functional theory with geometrical relaxations. The results show that H2S and CH3SH are mainly adsorbed in the form of molecules on the pure Fe2O3(001) surface. On the vacant α-Fe2O3(001) surface, they can be adsorbed on Fe atoms in molecular form and by dissociation. The absolute value of the adsorption energy of H2S and CH3SH on the vacancy defect α-Fe2O3 surface is larger, and the density of states show that the electron orbital hybridization is more significant, and the adsorption is stronger. The charge differential density and Mulliken charge population analysis show that the charge is rearranged and chemical bonds are formed. The affinity of H2S to the vacancy α-Fe2O3(001) surface is slightly higher than that of CH3SH, while COS molecules basically do not adsorb on the α-Fe2O3(001) surface, which may be related to the stable chemical properties of the molecules themselves.


2021 ◽  
Vol 33 ◽  
pp. 35-46
Author(s):  
Ankita Pandey ◽  
Abhishek Kumar Gupta ◽  
Shivani Gupta ◽  
Sarvesh Kumar Gupta ◽  
Rajesh Kumar Yadav

Polysaccharide biopolymer Agar-Agar extracted from red algae is a natural and biodegradable polymer. It is a combination of agarose (a neutral and linear polymer, with repeated units of agarobiose) and a heterogeneous mixture of agaropectin (a charged sulfated polymer). In this study, a comparative study of structural vibrational and electrochemical properties of agar-agar biopolymer with two different methods HF (Hartree-Fock) and DFT (Density Functional Theory) using a basis set 631+G (d, p) is performed. The comparative structural study of agar-agar biopolymer by HF and DFT method has been carried out to calculate the stability of the molecule. The thermionic properties and Mulliken charge distribution are analysed to deliver a quantitative study of partial atomic charge distribution. The overall vibrational analysis of primal modes of the biopolymer has been studied using FTIR analysis. Based on highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) composition and energies, various chemical parameters of the biopolymer have been evaluated. The Physico-chemical properties of this polysaccharide show a strong correlation with its optimized structure. Agar-agar has its application in the electrochemical, biotechnological, and pharmaceutical fields, as a stabilizer and gelling material.


Chemosensors ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 227
Author(s):  
Qichao Li ◽  
Yamin Liu ◽  
Di Chen ◽  
Jianmin Miao ◽  
Xiao Zhi ◽  
...  

High-performance tracking trace amounts of NO2 with gas sensors could be helpful in protecting human health since high levels of NO2 may increase the risk of developing acute exacerbation of chronic obstructive pulmonary disease. Among various gas sensors, Graphene-based sensors have attracted broad attention due to their sensitivity, particularly with the addition of noble metals (e.g., Ag). Nevertheless, the internal mechanism of improving the gas sensing behavior through doping Ag is still unclear. Herein, the impact of Ag doping on the sensing properties of Graphene-based sensors is systematically analyzed via first principles. Based on the density-functional theory (DFT), the adsorption behavior of specific gases (NO2, NH3, H2O, CO2, CH4, and C2H6) on Ag-doped Graphene (Ag–Gr) is calculated and compared. It is found that NO2 shows the strongest interaction and largest Mulliken charge transfer to Ag–Gr among these studied gases, which may directly result in the highest sensitivity toward NO2 for the Ag–Gr-based gas sensor.


2021 ◽  
Vol 9 (2) ◽  
pp. 161-169
Author(s):  
E. T. Oganesyan ◽  
S. S. Shatokhin

The quantum-chemical parameters of 52 derivatives related to flavanones, flavanonoles, flavones and flavonoles with a phloroglucinic type of the A ring and containing electron-donating substituents in the B ring were studied.The aim is the analysis of the dynamics of changes in the electron density, bond numbers, free valence indices and unsaturation indices on carbon atoms C-7 → C-8 of the vinyl group of the main conjugation chain in relation to the position and number of substituents in the “B” ring and the type of the pharmacological activity.Materials and methods. The quantum-chemical parameters of the 4 analyzed groups of the compounds, have been calculated by the semi-empirical method PM7 (WinMopac 2016 program) on the workstation with an Intel Xeon E5-1620 3.5 GHz processor, 20 GB of RAM.Results and discussion. When comparing the quantum chemical parameters of the analyzed compounds, it was established that when the C-7 → C-8 multiple bond is formed, the free valency and unsaturation indices increase on both carbon atoms of the vinylene group in flavones and flavonols compared to the corresponding flavanones and flavanonols. This is explained by the fact that the value of the bond numbers Nµ on these atoms, on the contrary, decreases (Fµ = 4.732-Nµ). The transition from flavanone to flavone is accompanied by the formation of a vinyl group C-7 → C-8, and therefore both atoms from the sp3-hybridized state go into the sp2-state. The consequence of this transformation is a change in the electronegativity value and an increase in the unsaturation index of C-7 and C-8 atoms: C sp3 = 2.5;  Csp2 = 2.8. At the same time, the transition from flavanone to flavone leads to the formation of a conjugated system with the participation of π-electrons of the aromatic system “B”, C-7, C-8 atoms and the carbonyl group, which is commonly called the “main conjugation chain”. These structural changes, namely, the transition from a less oxidized flavanone to a more oxidized flavone, contribute to a decrease in the electron density on C-7 and C-8 atoms, and an increase in the total unsaturation of the molecules in general. Mulliken charges on C-7 of all groups of compounds are characterized by a positive value. As for the carbon atoms of the B fragment, the following features are revealed here: in the presence of one substituent -OH or -OCH3 on the carbon atom to which the substituent is bounded, the Mulliken charge is positive; if there are two substituents in the B ring -OH or -OCH3, as well as two -OCH3 groups, then the carbon atoms bonded to the indicated substituents also have a positive Mulliken charge; in the case of trihydroxy substituted in the C-2, C-3 and C-4 B ring, all three carbon atoms are characterized by a positive Mulliken charge; if there are methoxy groups in positions C-2, C-3 and C-4, then the positive Mulliken charge is concentrated only on C-2 and C-4 atoms, and on C-3 atom this charge has a negative value.Conclusion. The above data on the quantum-chemical parameters of the main conjugation chain indicate that the transition of C-7 and C-8 atoms to the sp2-hybrid state, leads to a decrease in the electron density and a decrease in the bond numbers, with a simultaneous increase in the indices of unsaturation and free valence on these atoms. Thus, the trigger mechanism of the anti-radical activity, primarily with respect to the HO • radical, is determined by the fact that this particle, electrophilic in its properties, will attach in the C-8  atom during an initial attack. 


Author(s):  
S.N. Saravanamoorthy ◽  
B. Vasanthi ◽  
R. Poornima

Structure based biological and chemical properties of 4-(carboxyamino)-benzoic acid has been studied by quantum chemical methods. The revamped geometric structure and its quantum chemical parameters were obtained by DFT-B3LYP/6-311G method. Normal mode analysis is performed to assign the fundamental vibrational frequencies as per the potential energy distribution (PED) by using the VEDA program. Simulation of IR and Raman spectral patterns are observed by refinement of scale factors. TD-DFT approach is used to explore the excited states of molecule and prediction of electronic absorption spectra. NMR chemical shifts of the molecule are determined by the gauge independent atomic orbital method. The molecular docking is performed to recognize the binding energy of the ligand with the dynamic site of protein. In our docking analysis, the protein 5DT6 shows the best results than other three proteins which could be used for further analysis. Further inter and intra molecular interactions, electrophilic, nucleophilic and chemical reactivity sites are found by molecular electrostatic potential, HOMO-LUMO and Global chemical reactivity descriptors. Thermodynamic property of the title compound is also reported. The determined quantum chemical parameters show high reactivity and the dipole moment was sufficiently high enough to induce nonlinear characteristics which are required for applications in optoelectronic devices.


2021 ◽  
Vol 8 (6) ◽  
pp. 446-455
Author(s):  
E. T. Oganesyan ◽  
S. S. Shatokhin

42 derivatives of chalcone, flavanone and flavone having a phloroglucinic type of ring “A” and containing the same electron-donating substituents on ring “B”, have been studied. Flavonoids with the phloroglucinic type of ring “A” are the most common in nature, which is due to the peculiarities of biogenetic formation with the participation of malonyl and acetyl fragments.The aim of the article is to determine the effect of the hydroxy group in position 6' of chalcones and in position 5 of flavanones and flavones on bond numbers (Nµ), free valence indices (Fµ), Mulliken charges (a.e), electron density, unsaturation indices (IUA) of the carbon atoms C-1 → C-6 → C-7 → C-8.Materials and methods. The calculations of the listed above parameters with the use of the semi-empirical method PM7 (WinMopac 2016 program) have been carried out on a workstation with an Intel Xeon E5-1620 3.5 GHz processor, 20 GB of RAM.Results. The quantum-chemical characteristics of the considered derivatives having a phloroglucinic type of the “A” ring, indicate that the OH group in position 6' of chalcones (in the corresponding flavanones and flavones in position 5) has different effects: a slight increase occurs in chalcones negative charge (a.e.) and electron density, the bond numbers take different values, which depends on the position and number of substituents on the ring "B". In flavanones, Nµ practically remains at the same level of 3.822-3.829. For flavones, the binding numbers Nµ for C-8 are in the range of 3.700-3.706, and the Mulliken charges are in the range from -0.4120 to -0.4356. For position-substituted C-3 (6anone and 7anone), the charges are -0.4436 and -0.4479, respectively. The charge on C-7 of chalcones is negative for compounds 4x, 5x, 10x and 13x from -0.0204 to -0.0470. The remaining derivatives of the chalcone, as well as the corresponding flavanones and flavones, are characterized by a positive value of a.e. on C-7. Based on the bond numbers (Nµ), free valency indices (Fµ) have been found for the carbon atoms of the cinnamoyl fragment C-1 → C-6 → C-7 → C-8. When comparing the obtained data, it was found out that for chalcones on C-1 → C-8 atoms, the values of the free valence indices are in the range of 0.900-0.980 for compounds 12x, 13x, where Fµ> 1. For flavanones on C-1, C-3, and C-5 atoms (compounds 12anone and 13anone), the free valence indices are in the range of 0.984-1.024, and for the remaining atoms the value of Fµ is approximately the same as that of chalcones. On the C-8 atoms of all the derivatives, as well as on C-1, C-3 and C-5 (compounds 12one, 13one), Fµ ≥ 1.0. It can be assumed that at values of Fµ = 0.850-0.955 for all the analyzed compounds, coupling reactions on the double bond are possible, and if Fµ ≥1, the coupling will take place according to the free radical mechanism. The data obtained indicate that the OH group in position 6’ for the chalcone and 5 for the flavanones, does not significantly effect the Mulliken charge (a.e) and the electron density on C-8 atoms.Conclusion. It has been established that the OH group in position 6' of the "A" ring of chalcones (in position 5 of the "A" ring in flavones and flavanones) has a conflicting effect on the bond numbers: when passing from chalcone to flavanone, Nµ increases, and then, in flavone, sharply decreases. For C-8 of all flavone derivatives, Fµ ≥1. The following conclusion has been confirmed: at the initial stage of the reaction the electrophilic hydroxyl radical is attached at the C-8 position of the cinnamoyl fragment


2021 ◽  
Author(s):  
Somayeh Tohidi ◽  
Tavakkol Tohidi ◽  
Parvin Hamdi Mohammadabad

Abstract Understanding the effect of decorating of copper oxide (CuO) on Carbon monoxide (CO) adsorption at zinc oxide nanotube is crucial for designing a high performance CO gas sensor. In this work, CO sensing properties of copper oxide-decorated zinc oxide (CuO-ZnO) nanotube is studied theoretically by employing first-principles density functional theory for the first time. The stability, adsorption mechanism, density of states, and change in electrical conductivity are studied. The results of calculating the adsorption energy show strong chemical adsorption of CO on CuO-ZnO nanotubes. The adsorption energy of CO on CuO-ZnO nanotube is calculated as 7.5 times higher than that on ZnO nanotube. The results of the Mulliken charge analysis reveal that electron transfer occurs from CO molecules to CuO-ZnO nanotubes. Additionally, the electrical conductivity of CuO-ZnO nanotubes significantly changes after adsorption of CO at room temperature. According to these studies, CuO-ZnO nanotube sensors can be used for the detection of CO gas. The results are in excellent agreement with the reported experimental results.


Sign in / Sign up

Export Citation Format

Share Document