willow breeding
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 0)

Author(s):  
Craig H Carlson ◽  
Yongwook Choi ◽  
Agnes P Chan ◽  
Christopher D Town ◽  
Lawrence B Smart

Abstract Many studies have highlighted the complex and diverse basis for heterosis in inbred crops. Despite the lack of a consensus model, it is vital that we turn our attention to understanding heterosis in undomesticated, heterozygous, and polyploid species, such as willow (Salix spp.). Shrub willow is a dedicated energy crop bred to be fast-growing and high yielding on marginal land without competing with food crops. A trend in willow breeding is the consistent pattern of heterosis in triploids produced from crosses between diploid and tetraploid species. Here, we test whether differentially expressed genes are associated with heterosis in triploid families derived from diploid S. purpurea, diploid S. viminalis, and tetraploid S. miyabeana parents. Three biological replicates of shoot tips from all family progeny and parents were collected after 12 weeks in the greenhouse and RNA extracted for RNA-Seq analysis. This study provides evidence that nonadditive patterns of gene expression are correlated with nonadditive phenotypic expression in interspecific triploid hybrids of willow. Expression-level dominance was most correlated with heterosis for biomass yield traits and was highly enriched for processes involved in starch and sucrose metabolism. In addition, there was a global dosage effect of parent alleles in triploid hybrids, with expression proportional to copy number variation. Importantly, differentially expressed genes between family parents were most predictive of heterosis for both field and greenhouse collected traits. Altogether, these data will be used to progress models of heterosis to complement the growing genomic resources available for the improvement of heterozygous perennial bioenergy crops.


2021 ◽  
Author(s):  
Craig H Carlson ◽  
Yongwook Choi ◽  
Agnes P Chan ◽  
Christopher D Town ◽  
Lawrence B Smart

Many studies have highlighted the complex and diverse basis for heterosis in inbred crops. Despite the lack of a consensus model, it is vital that we turn our attention to understanding heterosis in undomesticated, heterozygous, and polyploid species, such as willow (Salix spp.). Shrub willow is a dedicated energy crop bred to be fast-growing and high yielding on marginal land without competing with food crops. A trend in willow breeding is the consistent pattern of heterosis in triploids produced from crosses between diploid and tetraploid species. Here, we test whether differentially expressed genes are associated with heterosis in triploid families derived from diploid S. purpurea, diploid S. viminalis, and tetraploid S. miyabeana parents. Three biological replicates of shoot tips from all family progeny and parents were collected after 12 weeks in the greenhouse and RNA extracted for RNA-Seq analysis. This study provides evidence that nonadditive patterns of gene expression are correlated with nonadditive phenotypic expression in interspecific triploid hybrids of willow. Expression-level dominance was most correlated with heterosis for biomass yield traits and was highly enriched for processes involved in starch and sucrose metabolism. In addition, there was a global dosage effect of parent alleles in triploid hybrids, with expression proportional to copy number variation. Importantly, differentially expressed genes between family parents were most predictive of heterosis for both field and greenhouse collected traits. Altogether, these data will be used to progress models of heterosis to complement the growing genomic resources available for the improvement of heterozygous perennial bioenergy crops.


2015 ◽  
Vol 45 (11) ◽  
pp. 1662-1667 ◽  
Author(s):  
Elena Palomo-Ríos ◽  
William Macalpine ◽  
Ian Shield ◽  
Joanna Amey ◽  
Cuma Karaoğlu ◽  
...  

Willow is a versatile crop with considerable potential as a source of renewable biomass for bioenergy. Although breeding new varieties takes less time compared with some other tree species, producing new willow varieties is still a slow, labour-intensive process, partly because clonally propagating the results of each cross is a bottleneck early in the breeding scheme. In this paper, we describe a facile, rapid method for the in vitro culture of a wide range of willow genotypes. We have developed a combination of media and methods for efficient tissue-culture propagation to rapidly multiply individual plants and simultaneously produce clean, stock germplasm applicable to a wide range of willow genotypes that can be phytosanitary tested to demonstrate their disease-free status. The micropropagation method described could generate in the order of 5000 viable, transplantable clones from a single plant in just 24 weeks and was used to produce phytosanitary tested breeding material for export to overcome restriction on the international transport of woody cuttings. This method could represent a valuable biotechnology adjunct to willow breeding programmes and could accommodate early selection via molecular or biochemical markers.


Sign in / Sign up

Export Citation Format

Share Document