primary creep strain
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

2016 ◽  
Vol 61 (2) ◽  
pp. 683-688
Author(s):  
W. Ziaja ◽  
M. Motyka ◽  
K. Kubiak ◽  
J. Sieniawski

Abstract Creep and fatigue properties of two-phase titanium alloys show strong dependence on microstructure, especially morphology of the α and β phases which can be controlled to certain extent by proper selection of hot working and heat treatment conditions. In the paper the creep behaviour of Ti-6Al-2Mo-2Cr alloy (VT3-1) at elevated temperature was modelled. Finite element analyses of primary creep stage were carried out taking into account some microstructural features of the two-phase alloy that were included in the physical model and different properties of α and β phases. In order to verify results of calculations distinct types of microstructure were developed in the alloy by heat treatment and creep tests were carried out at elevated temperature (450°C) at various stress levels. Based on the FEM simulations the effect of changes of some microstructure features on primary creep strain development was estimated.


Author(s):  
W. David Day ◽  
Ali P. Gordon

Accurate prediction of creep deformation is critical to assuring the mechanical integrity of heavy-duty, industrial gas turbine (IGT) hardware. The classical description of the creep deformation curve consists of a brief primary, followed by a longer secondary, and then a brief tertiary creep phase. An examination of creep tests at four temperatures for a proprietary, nickel-based, equiaxed, super-alloy revealed many occasions where there is no clear transition from secondary to tertiary creep. This paper presents a new creep model for a Nickel-based super-alloy, with some similarities to the Theta Projection (TP) creep model by Evans and all [1]. The alternative creep equation presented here was developed using meaningful parameters, or θ’s, such as: the primary creep strain, time at primary creep strain, minimum (or secondary) creep rate, and time that tertiary creep begins. By plotting the first and second derivative of creep, the authors were able to develop a creep equation that accurately matches tests. This creep equation is identical to the primary creep portion of the theta projection model, but has a modified second term. An additional term is included to simulate tertiary creep. An overall scaling factor is used to satisfy physical constraints and ensure solution stability. The new model allows a constant creep rate phase to be maintained, captures tertiary creep, and satisfies physical constraints. The coefficients of the creep equations were developed using results from 27 creep tests performed at 4 temperatures. An automated routine was developed to directly fit the θ coefficients for each phase, resulting in a close overall fit for the material. The resultant constitutive creep model can be applied to components which are subjected to a wide range of temperatures and stresses. Useful information is provided to designers in the form of time to secondary and tertiary creep for a given stress and temperature. More accurate creep predictions allow PSM to improve the structural integrity of its turbine blades and vanes.


1999 ◽  
Vol 14 (1) ◽  
pp. 146-161 ◽  
Author(s):  
Dongming Zhu ◽  
Robert A. Miller

A laser sintering/creep technique has been established to determine the creep behavior of thermal barrier coatings under steady-state high heat flux conditions. For a plasma sprayed zirconia–8 wt.% yttria coating, a significant primary creep strain and a low apparent creep activation energy were observed. Possible creep mechanisms involved include stress induced mechanical sliding and temperature and stress enhanced cation diffusion through the splat and grain boundaries. The elastic modulus evolution, stress response, and total accumulated creep strain variation across the ceramic coating are simulated using a finite difference approach. The modeled creep response is consistent with experimental observations.


Sign in / Sign up

Export Citation Format

Share Document