Assessing the Condition of Propulsion Coils of Superconducting Maglev Systems Using an On-Board Radio Interferometer System with a Vector-Antenna

Author(s):  
Masatake Kawada
2018 ◽  
pp. 51-54
Author(s):  
I. E. Arsaev ◽  
Yu. V. Vekshin ◽  
A. I. Lapshin ◽  
V. V. Mardyshkin ◽  
M. V. Sargsyan ◽  
...  

2019 ◽  
Vol 81 (1) ◽  
pp. 118-128
Author(s):  
V. V. Balandin ◽  
V. V. Balandin ◽  
V. V. Parkhachev

Investigating impact interaction of solid and deformed bodies with obstacles of various physical natures requires developing experimental methodologies of registering the parameters of the interaction process. In experimental investigations of impact interaction of solids, it is common practice to measure displacement of strikers as a function of time, as well as their velocity and deceleration. To determine the displacement and velocity of a striker, a radio-interferometric methodology of registering the displacement of its rear end is proposed. In contrast with the registration methods based on high-speed filming and pulsed X-ray photography, the method using a millimeter-range radio-interferometer provides continuous high-accuracy registering of the displacement of the rear end of a striker in a wide range of displacement values. To test the effectiveness of the methodology, a series of experiments have been conducted on registering the motion of a cylindrical striker of an aluminum alloy, fired from a 20mm-dia gas gun. The displacement of the striker was also monitored using high-speed filming. The results of measuring using the two methodologies differ within the limits of the error of measurement. Based on the results of the above experiments, it has been concluded that the methodology of determining the displacement and velocity of strikers in a ballistic experiment using a mm-range radio-interferometer makes it possible to measure practically continuously large displacements (100 mm and larger) to a safe accuracy. The present methodology can be used for measuring the displacement and velocity of the rear end of a striker interacting with obstacles of various physical natures (metals, ceramics, soils, concretes, etc.).


2021 ◽  
Author(s):  
Alexander Hegedus ◽  
Ward Manchester ◽  
Justin Kasper ◽  
Joseph Lazio ◽  
Andrew Romero-Wolf

<p>The Earth’s Ionosphere limits radio measurements on its surface, blocking out any radiation below 10 MHz. Valuable insight into many astrophysical processes could be gained by having a radio interferometer in space to image the low frequency window, which has never been achieved. One application for such a system is observing type II bursts that track solar energetic particle acceleration occurring at Coronal Mass Ejection (CME)-driven shocks. This is one of the primary science targets for SunRISE, a 6 CubeSat interferometer to circle the Earth in a GEO graveyard orbit. SunRISE is a NASA Heliophysics Mission of Opportunity that began Phase B (Formulation) in June 2020, and plans to launch for a 12-month mission in mid-2023. In this work we present an update to the data processing and science analysis pipeline for SunRISE and evaluate its performance in localizing type II bursts around a simulated CME.</p><p>To create realistic virtual type II input data, we employ a 2-temperature MHD simulation of the May 13th 2005 CME event, and superimpose realistic radio emission models on the CME-driven shock front, and propagate the signal through the simulated array. Data cuts based on different plasma parameter thresholds (e.g. de Hoffman-Teller velocity and angle between shock normal and the upstream magnetic field) are tested to get the best match to the true recorded emission.  This model type II emission is then fed to the SunRISE data processing pipeline to ensure that the array can localize the emission. We include realistic thermal noise dominated by the galactic background at these low frequencies, as well as new sources of phase noise from positional uncertainty of each spacecraft. We test simulated trajectories of SunRISE and image what the array recovers, comparing it to the virtual input, finding that SunRISE can resolve the source of type II emission to within its prescribed goal of 1/3 the CME width. This shows that SunRISE will significantly advance the scientific community’s understanding of type II burst generation, and consequently, acceleration of solar energetic particles at CMEs.  This unique combination of SunRISE observations and MHD recreations of space weather events will allow an unprecedented look into the plasma parameters important for these processes. </p>


Sign in / Sign up

Export Citation Format

Share Document