recombination velocity
Recently Published Documents


TOTAL DOCUMENTS

543
(FIVE YEARS 29)

H-INDEX

40
(FIVE YEARS 1)

2021 ◽  
Vol 119 (19) ◽  
pp. 191102
Author(s):  
Nicolas M. Andrade ◽  
Sean Hooten ◽  
Yunjo Kim ◽  
Jeehwan Kim ◽  
Eli Yablonovitch ◽  
...  

APL Materials ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 111113
Author(s):  
Joonas Isometsä ◽  
Tsun Hang Fung ◽  
Toni P. Pasanen ◽  
Hanchen Liu ◽  
Marko Yli-koski ◽  
...  

2021 ◽  
Vol 231 ◽  
pp. 111292
Author(s):  
Andreas Wolf ◽  
Julian Egle ◽  
Sebastian Mack ◽  
Hannes Höffler ◽  
David Herrmann ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4986
Author(s):  
Gokul Sidarth Thirunavukkarasu ◽  
Mehdi Seyedmahmoudian ◽  
Jaideep Chandran ◽  
Alex Stojcevski ◽  
Maruthamuthu Subramanian ◽  
...  

Expeditious urbanization and rapid industrialization have significantly influenced the rise of energy demand globally in the past two decades. Solar energy is considered a vital energy source that addresses this demand in a cost-effective and environmentally friendly manner. Improving solar cell efficiency is considered a prerequisite to reinforcing silicon solar cells’ growth in the energy market. In this study, the influence of various parameters like the thickness of the absorber or wafer, doping concentration, bulk resistivity, lifetime, and doping levels of the emitter and back surface field, along with the surface recombination velocity (front and back) on solar cell efficiency was investigated using PC1D simulation software. Inferences from the results indicated that the bulk resistivity of 1 Ω·cm; bulk lifetime of 2 ms; emitter (n+) doping concentration of 1×1020 cm−3 and shallow back surface field doping concentration of 1×1018 cm−3; surface recombination velocity maintained in the range of 102 and 103 cm/s obtained a solar cell efficiency of 19%. The Simulation study presented in this article allows faster, simpler, and easier impact analysis of the design considerations on the Si solar cell wafer fabrications with increased performance.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 272
Author(s):  
Bingfei Dou ◽  
Rui Jia ◽  
Zhao Xing ◽  
Xiaojiang Yao ◽  
Dongping Xiao ◽  
...  

Light-trapping nanostructures have been widely used for improving solar cells’ performance, but the higher surface recombination and poor electrode contact introduced need to be addressed. In this work, silicon nanostructures were synthesized via silver-catalyzed etching to texturize solar cells. Atomic-layer-deposited Al2O3 passivated the nanotextured cells. A surface recombination velocity of 126 cm/s was obtained, much lower than the 228 cm/s of the SiNX-passivated one. Additionally, the open-circuit voltage (VOC) of the nanotextured cells improved significantly from 582 to 610 mV, as did the short-circuit current (JSC) from 25.5 to 31 mA/cm2. Furthermore, the electrode contact property was enhanced by light-induced plating. A best efficiency of 13.3% for nano-textured cells was obtained, which is higher than the planar cell’s 12%.


2021 ◽  
Author(s):  
Z. Pezeshki ◽  
A. Zekry

The book presents a comprehensive survey about advanced solar cell technologies. Focus is placed on semiconductor materials, solar cell efficiency, improvements in surface recombination velocity, charge density, high ultraviolet (UV) sensitivity, modeling of solar cells etc. The book references 281 original resources with their direct web links for in-depth reading.


Author(s):  
A. D. Péné ◽  
◽  
F. I. Barro ◽  
M. Kamta ◽  
L. Bitjoka ◽  
...  

The aim of this work is to present a study of the recombination velocities at the junction initiating the shortcircuit (Sfsc) and limiting the open circuit (Sfoc) of a silicon solar cell under magnetic field in the static regime. From the continuity equation, the density of minority charge carriers in the base, the photocurrent density, and the phototension are determined. The study of the photocurrent density and the phototension, as a function of the junction recombination velocity, makes it possible to determine the recombination velocities at the junction initiating the short-circuit and limiting the open circuit respectively. From the profile of the variation of the photocurrent density and of the phototension as a function of the junction recombination velocity, a technique for determining the junction recombination velocities initiating the short circuit situation and limiting the open circuit is presented.


Sign in / Sign up

Export Citation Format

Share Document