Semiconductor Materials and Modelling for Solar Cells

2021 ◽  
Author(s):  
Z. Pezeshki ◽  
A. Zekry

The book presents a comprehensive survey about advanced solar cell technologies. Focus is placed on semiconductor materials, solar cell efficiency, improvements in surface recombination velocity, charge density, high ultraviolet (UV) sensitivity, modeling of solar cells etc. The book references 281 original resources with their direct web links for in-depth reading.

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4986
Author(s):  
Gokul Sidarth Thirunavukkarasu ◽  
Mehdi Seyedmahmoudian ◽  
Jaideep Chandran ◽  
Alex Stojcevski ◽  
Maruthamuthu Subramanian ◽  
...  

Expeditious urbanization and rapid industrialization have significantly influenced the rise of energy demand globally in the past two decades. Solar energy is considered a vital energy source that addresses this demand in a cost-effective and environmentally friendly manner. Improving solar cell efficiency is considered a prerequisite to reinforcing silicon solar cells’ growth in the energy market. In this study, the influence of various parameters like the thickness of the absorber or wafer, doping concentration, bulk resistivity, lifetime, and doping levels of the emitter and back surface field, along with the surface recombination velocity (front and back) on solar cell efficiency was investigated using PC1D simulation software. Inferences from the results indicated that the bulk resistivity of 1 Ω·cm; bulk lifetime of 2 ms; emitter (n+) doping concentration of 1×1020 cm−3 and shallow back surface field doping concentration of 1×1018 cm−3; surface recombination velocity maintained in the range of 102 and 103 cm/s obtained a solar cell efficiency of 19%. The Simulation study presented in this article allows faster, simpler, and easier impact analysis of the design considerations on the Si solar cell wafer fabrications with increased performance.


2015 ◽  
Vol 1117 ◽  
pp. 114-117
Author(s):  
J. Kaupužs ◽  
Arturs Medvid'

The photo current-voltage characteristic of a solar cell with graded band gap is calculated numerically based on the drift-diffusion equation and Poisson equation. The calculated efficiency of the CdTe solar cell with p-n junction located in 1μm depth increases remarkably when the band gap of the front n-type layer is graded. The effect is strong for high surface recombination velocity and is remarkable even at: the calculated efficiency increases from 19.6% to 24.3%.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 592
Author(s):  
Myeong Sang Jeong ◽  
Yonghwan Lee ◽  
Ka-Hyun Kim ◽  
Sungjin Choi ◽  
Min Gu Kang ◽  
...  

In the fabrication of crystalline silicon solar cells, the contact properties between the front metal electrode and silicon are one of the most important parameters for achieving high-efficiency, as it is an integral element in the formation of solar cell electrodes. This entails an increase in the surface recombination velocity and a drop in the open-circuit voltage of the solar cell; hence, controlling the recombination velocity at the metal-silicon interface becomes a critical factor in the process. In this study, the distribution of Ag crystallites formed on the silicon-metal interface, the surface recombination velocity in the silicon-metal interface and the resulting changes in the performance of the Passivated Emitter and Rear Contact (PERC) solar cells were analyzed by controlling the firing temperature. The Ag crystallite distribution gradually increased corresponding to a firing temperature increase from 850 ∘C to 950 ∘C. The surface recombination velocity at the silicon-metal interface increased from 353 to 599 cm/s and the open-circuit voltage of the PERC solar cell decreased from 659.7 to 647 mV. Technology Computer-Aided Design (TCAD) simulation was used for detailed analysis on the effect of the surface recombination velocity at the silicon-metal interface on the PERC solar cell performance. Simulations showed that the increase in the distribution of Ag crystallites and surface recombination velocity at the silicon-metal interface played an important role in the decrease of open-circuit voltage of the PERC solar cell at temperatures of 850–900 ∘C, whereas the damage caused by the emitter over fire was determined as the main cause of the voltage drop at 950 ∘C. These results are expected to serve as a steppingstone for further research on improvement in the silicon-metal interface properties of silicon-based solar cells and investigation on high-efficiency solar cells.


2015 ◽  
Author(s):  
Ashish Sharma ◽  
Sandra Zivanovic ◽  
Shravan R. Animilli ◽  
Dentcho A. Genov

There is an important need for improvement in both cost and efficiency of photovoltaic cells. For improved efficiency a better understanding of solar cell performance is required. In this paper we propose an analytical kinetic model of thin-film silicon solar cell, which can provide an intuitive understanding of the effect of illumination on its charge carriers and electric current. The separate cases of homogeneous and inhomogeneous charge carrier generation rates across the device are investigated. Our model also provides for the study of the carrier transport within the quasi-neutral and depletion zones of the device, which is of importance for thin-film solar cells. Two boundary conditions based on (i) fixed surface recombination velocity at the electrodes and (ii) intrinsic conditions for large size devices are explored. The device short circuit current and open circuit voltage are found to increase with the decrease of surface recombination velocity at electrodes. The power conversion efficiency of thin film solar cells is observed to strongly depend on impurity doping concentrations. The developed analytical kinetic model can be used to optimize the design and performance of thin-film solar cells without involving highly complicating numerical codes to solve the corresponding drift-diffusion equations.


2015 ◽  
Vol 2015 ◽  
pp. 1-4 ◽  
Author(s):  
Avigyan Chatterjee ◽  
Ashim Kumar Biswas ◽  
Amitabha Sinha

Though Schottky-barrier solar cells have been studied extensively previously, not much work has been done recently on these cells, because of the fact that conventional p-n junction silicon solar cells have much higher efficiency and have attracted the attention of most of the researchers. However, the Schottky-barrier solar cells have the advantage of simple and economical fabrication process. In this paper, the effect of back surface recombination velocity on the minority carrier distribution and the spectral response of a Schottky-barrier silicon solar cell have been investigated and, based on this study, a new design of the cell with a back surface field has been suggested, which is expected to give much improved performance.


2012 ◽  
Vol 187 ◽  
pp. 341-344 ◽  
Author(s):  
Twan Bearda ◽  
Kunta Yoshikawa ◽  
Elisabeth van Assche ◽  
Barry O’Sullivan ◽  
Ivan Gordon ◽  
...  

Solar cells employing heterojunction emitters of amorphous silicon (a-Si) on a monocrystalline silicon (c-Si) substrate have demonstrated high efficiencies without requiring high-temperature processing [. An example of such a cell structure is shown in Figure 1. It has been found that the cell efficiency can be boosted by inserting a thin undoped (intrinsic) a-Si layer between the a-Si emitter and the c-Si substrate. The thin intrinsic layer provides very good passivation of interface defects, thus reducing the surface recombination velocity.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Author(s):  
H. Bitam ◽  
B. Hadjoudja ◽  
Beddiaf Zaidi ◽  
C. Shakher ◽  
S. Gagui ◽  
...  

Due to increased energy intensive human activities resulting accelerated demand for electric power coupled with occurrence of natural disasters with increased frequency, intensity, and duration, it becomes essential to explore and advance renewable energy technology for sustainability of the society. Addressing the stated problem and providing a radical solution has been attempted in this study. To harvest the renewable energy, among variety of solar cells reported, a composite a-Si/CZTS photovoltaic devices has not yet been investigated. The calculated parameters for solar cell based on the new array of layers consisting of a-Si/CZTS are reported in this study. The variation of i) solar cell efficiency as a function of CZTS layer thickness, temperature, acceptor, and donor defect concentration; ii) variation of the open circuit current density as a function of temperature, open circuit voltage; iii) variation of open circuit voltage as a function of the thickness of the CZTS layer has been determined. There has been no reported study on a-Si/CZTS configuration-based solar cell, analysis of the parameters, and study to address the challenges imped efficiency of the photovoltaic device and the same has been discussed in this work. The value of the SnO2/a-Si/CZTS solar cells obtained from the simulation is 23.9 %.


Sign in / Sign up

Export Citation Format

Share Document