continental sabkha
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 54 (2F) ◽  
pp. 13-21
Author(s):  
Hamid Alsultan ◽  
Karrar Awad

A surface section of the Fatha Formation (Middle Miocene) was studied in the Shaqlawa area, Erbil, Northern Iraq. It consists of siliciclastic silt, evaporates, and carbonates in a mixed siliciclastic silt composition. The Fatha Formation in the study area can be divided into two members of variable thickness based on rocky differences. Depositional settings ranged from shallow open-marine and restricted-hypersaline to supratidal and continental (sabkha, fluvio-deltaic, and exposure). It is bounded below by a type one sequence boundary above the Eocene Pila Spi Formation and marked by conglomerates. The upper sequence boundary with the Injana Formation is conformable. Thirteen sedimentary facies were distinguished in the Fatha Formation within the Shaqlawa region of northern Iraq and include sandstone to mudstone, wavy bedded sandstone to mudstone, Flaser bedded sandstone to mudstone, Marl, sandstone, cross lamination sandstone, Trough cross bedded sandstone, Planar cross bedded sandstone, marly limestone lithofacies, bioclastic grainstone to packstone microfacies, bioclastic lime mudstone to wackestone microfacies, lime mudstone-wackestone microfacies, and gypsum lithofacies. The depositional environment of the formation was inferred based on the facies association concepts. The succession formation can be divided into several third-order cycles, which reflect fluctuations in the relative sea-level rise. High-frequency cycles of transgressive System Tract and Highstand System tract. Fundamental to the evolution of the sequence, in this case, is the local tectonic component.


2015 ◽  
Vol 8 (10) ◽  
pp. 7973-7991 ◽  
Author(s):  
Osama E. A. Attia ◽  
Hussien K. Hussien

GeoArabia ◽  
2008 ◽  
Vol 13 (3) ◽  
pp. 141-174
Author(s):  
Ali Ismail Al-Juboury ◽  
Tom McCann

ABSTRACT The Middle Miocene Fatha Formation (previously Lower Fars Formation) in northern Iraq was deposited in a broad and shallow foreland basin adjacent to the Zagros and Taurus Mountains. It forms a transgressive-regressive sequence comprising numerous shallowing-upward cycles of alternating mudrocks, limestones, gypsum and/or anhydrite and halite. These cycles reflect rapid changes in accommodation space in settings that ranged from open and restricted hypersaline marine to continental (sabkha and fluvio-deltaic). In the marginal parts of the basin, continental siliciclastics (red and variegated marls, silts and fine sandstones) represent either aeolian deposition or a combined lagoonal- and/or fluvial-dominated delta system. Eustasy, rather than tectonics, caused the high-frequency cyclicity seen in the Fatha Formation. We present twelve sections dominated by evaporites from the Sinjar and Fatha sub-basins to represent the main lithologic constituents of the formation. Our detailed analysis of the sedimentary succession focuses on the three main lithofacies (siliciclastics, carbonates and evaporites). Petrographic, geochemical and scanning electron microscope analysis of these units are presented. We identified a range of carbonate lithotypes: marly, arenaceous (detrital), organic-rich (fossiliferous), dolomitic limestone and dolomite. Dolomitic limestones occur mostly in the lower part of the lower member of the formation, which was deposited in a barred lagoonal environment with high salinity. The presence of peloidal lime-wackestone with bioclasts, particularly in the upper part of the lower member of the formation, may reflect quiet, shallow-water marine conditions with moderate depths and low energy. The bioclastic-peloidal grainstone-packstone microfacies, with a common and diverse fossil assemblage, may reflect high to moderate energy, shallow-water environments. Evaporites comprise the main sediments of the Fatha Formation. Nodular gypsum is the dominant gypsum type, although laminated, thick-bedded, and secondary gypsum (selenite and satin spar) also occur. In the subsurface, anhydrite and halite are the principal minerals.


Sign in / Sign up

Export Citation Format

Share Document