stub column
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 23)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
Somasundhara Naathan M ◽  
Dr Ramadevi K

Construction of building requires proper planning and management. Buildings are subjected to various loads such as dead load, live load, wind load and seismic load. Seismic load has extreme adverse effect on building so it is necessary to perform seismic analysis. This paper explains about the response of building when it is subjected to seismic load, this response can be shown by story drift and base shear. Behavior of buildings with stub columns is analyzed and the results are compared with buildings without stub columns. Seismic analysis has been performed on (G+7) buildings located in seismic zones 2,3,4&5 using ETABS software. Analysis has been performed according to IS 1893:PartI (2002).The storey drift and design base shear are evaluated and compared. Pushover analysis was performed and the results were compared.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 948
Author(s):  
Yunlong Xu ◽  
Fei Lyu ◽  
Faxing Ding ◽  
Chenglu Liu ◽  
En Wang

This paper presents a numerical investigation of lightweight aggregate concrete-filled circular steel tubular (LACFCST) stub columns under axial compression. A finite 3D solid element model of the LACFCST stub column was established by adopting a plastic-damage constitutive model of lightweight aggregate concrete (LAC). The finite element model (FEM) analysis results revealed that the confinement effect of the steel tube on the infilled LAC was weaker than that on the infilled conventional concrete. A parametric study making use of 95 full-scale FEMs was conducted to investigate the influences of various design parameters of LACFCST stub columns on their ultimate axial bearing capacity and the composite actions. Moreover, a numerical model of the axial and transverse stress of steel tubes at the ultimate state of LACFCST columns was proposed using the regression method. Based on the equilibrium conditions and the proposed model, a practical design formula making use of an enhancement factor was derived to estimate the ultimate bearing capacity of LACFCST stub columns by using the superposition method. The validity of the proposed formula was verified against the experimental data of 49 LACFCST stub column specimens under the axial loading available in the literature. Meanwhile, the accuracy and conciseness of the proposed formula were evaluated by comparison with the formulas suggested by the existing design codes.


Sign in / Sign up

Export Citation Format

Share Document