elastomer seal
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 8)

H-INDEX

7
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Sayyad Zahid Qamar ◽  
Maaz Akhtar ◽  
Tasneem Pervez

Analytical models for swelling of rubberlike materials are difficult to formulate, and restricted in actual application due to their need for simplifying assumptions. Tests conducted on laboratory size samples of swelling elastomers cannot reproduce actual oil well conditions, and cannot cover all possible variations of testing parameters. However, these laboratory tests do provide useful information about material response of swellable elastomers in various conditions, serving as a basis for analytical and numerical modeling. Properly developed and robust numerical models can be used to predict near-actual performance of elastomeric seals. The current chapter describes the use of numerical (finite element) simulation to investigate swelling elastomer seal behavior in downhole petroleum applications. Variations in sealing (contact) pressure are studied for seal length, seal thickness, compression ratio, water salinity, swelling time, and type of well completion (open-hole or cased-hole). Month-long swelling experiments on samples of two actual elastomers (Chapters 3 and 7) provide input to the numerical model in terms of real material and deformation data. On the basis of these results, petroleum engineers can make informed decisions about the selection of elastomer material and seal geometry appropriate for the well type and conditions encountered. Application developers and researchers can also find this investigation useful in performance analysis and design of swelling elastomer seals.


2021 ◽  
Author(s):  
Sayyad Zahid Qamar ◽  
Maaz Akhtar ◽  
Tasneem Pervez

Swellable elastomers are used for zonal isolation and as an alternate to cementing is a new approach, resulting in significant reduction in time, cost, and weight. Very large strains, flexibility, resilience, and durability are their special features. Performance analysis is important design improvement and appropriate selection of swell packers. Experimental evaluation of swelling-elastomer seal performance can be very costly, and is not even possible in many cases. Numerical simulations (Chapters 8 and 9) can be more convenient, but computational effort and cost can be high. Development of closed-form (analytical) solutions is presented in this chapter to estimate the variation of contact pressure along the length of the elastomer seal. Major relevant parameters are properties of the material elastomer, seal configuration and size, magnitude of seal compression, and differential pressure across the seal. Numerical (finite element) modeling and simulation is also performed. There was good conformity between analytical and simulation results, validating the soundness of the analytical solution, and providing assurance that it can reliably predict the sealing response of the elastomer. A comprehensive parametric study is then conducted to assess seal performance while varying different key factors. Properties of the elastomer material (as it swells with exposure time) are required to run the analytical and the FE models. A large set of experiments were therefore designed and conducted to evaluate mechanical properties (E, G, K, and v) of the elastomer with gradual swelling (Chapters 3 and 7).


Author(s):  
Harshkumar Patel ◽  
Saeed Salehi

Abstract Elastomer seals are extensively used in various wellhead and casing/liner hanger equipment as barriers for isolating fluids. Seal assemblies have been identified as one of the major cause of well control incidents. Majority of hangers utilize conventional weight- or mechanical-set slip-and-seal assembly. The objective of this paper is to conduct detailed investigation of seal energization in conventional and relatively newer expandable type hanger seal assembly. To achieve the objective, finite element modeling approach was employed. Three dimensional computer models consisting of concentric casings and annular elastomer seal element were constructed. Seal energization process was modelled by manipulating boundary conditions. Conventional seal energization was mimicked by applying rigid support at the bottom of elastomer element and compressing it from the top. Expandable hanger type seal energization was modelled by radially displacing the inner pipe to compress annular seal element. Seal quality was evaluated in terms of contact stress values and profile along the seal-pipe interface. Different amount of seal energization were simulated. Both types of seal energization processes yielded different contact stress profiles. For the same amount of seal volumetric compression, contact stress profiles were compared. In case of conventional seal energization, contact stress profile decreases from the compression side towards support side. The seal in expandable hanger generates contact stress profile that peaks at the center of contact interface and reduces towards the ends. Convectional seal assembly has more moving parts, making it more prone to failure or under-energization. FEA Models were validated using analytical equations. Good match was obtained. Majority of research related to elastomer seal is focused on material properties evaluation. Limited information is available in public domain on functional design and assessment of seal assembly. This paper adds novel information by providing detailed assessment of advantages and limitations of two different seal energization process. This opens doors for further research in functional failure modes in seal assembly.


2019 ◽  
Vol 175 ◽  
pp. 246-254 ◽  
Author(s):  
Harshkumar Patel ◽  
Saeed Salehi ◽  
Catalin Teodoriu ◽  
Ramadan Ahmed

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 763 ◽  
Author(s):  
Harshkumar Patel ◽  
Saeed Salehi

Elastomer seals are extensively used in various wellhead and casing/liner hanger equipment as barriers for isolating fluids. Seal assemblies have been identified as one of the major cause of well control incidents. Majority of hangers utilize conventional weight- or mechanical-set slip-and-seal assembly. The objective of this paper is to conduct a detailed investigation of seal energization in conventional and relatively newer expandable type hanger seal assembly. To achieve the objective, the finite element modeling approach was employed. Three dimensional computer models consisting of concentric casings and annular elastomer seal element were constructed. Seal energization process was modelled by manipulating boundary conditions. Conventional seal energization was mimicked by applying rigid support at the bottom of elastomer element and compressing it from the top. Expandable hanger type seal energization was modelled by radially displacing the inner pipe to compress annular seal element. Seal quality was evaluated in terms of contact stress values and profile along the seal-pipe interface. Different amounts of seal energization were simulated. Both types of seal energization processes yielded different contact stress profiles. For the same amount of seal volumetric compression, contact stress profiles were compared. In case of conventional seal energization, contact stress profile decreases from the compression side towards support side. The seal in expandable hanger generates contact stress profile that peaks at the center of contact interface and reduces towards the ends. Convectional seal assembly has more moving parts, making it more prone to failure or under-energization. Finite Element Models were validated using analytical equations, and a good match was obtained. The majority of research related to elastomer seal is focused on material properties evaluation. Limited information is available in public domain on functional design and assessment of seal assembly. This paper adds novel information by providing detailed assessment of advantages and limitations of two different seal energization process. This opens doors for further research in functional failure modes in seal assembly.


2018 ◽  
Vol 994 ◽  
pp. 012002 ◽  
Author(s):  
T A Nadzharyan ◽  
L A Makarova ◽  
E G Kazimirova ◽  
N S Perov ◽  
E Yu Kramarenko

Sign in / Sign up

Export Citation Format

Share Document