scholarly journals Numerical Investigation of Elastomer Seal Performance

2021 ◽  
Author(s):  
Sayyad Zahid Qamar ◽  
Maaz Akhtar ◽  
Tasneem Pervez

Analytical models for swelling of rubberlike materials are difficult to formulate, and restricted in actual application due to their need for simplifying assumptions. Tests conducted on laboratory size samples of swelling elastomers cannot reproduce actual oil well conditions, and cannot cover all possible variations of testing parameters. However, these laboratory tests do provide useful information about material response of swellable elastomers in various conditions, serving as a basis for analytical and numerical modeling. Properly developed and robust numerical models can be used to predict near-actual performance of elastomeric seals. The current chapter describes the use of numerical (finite element) simulation to investigate swelling elastomer seal behavior in downhole petroleum applications. Variations in sealing (contact) pressure are studied for seal length, seal thickness, compression ratio, water salinity, swelling time, and type of well completion (open-hole or cased-hole). Month-long swelling experiments on samples of two actual elastomers (Chapters 3 and 7) provide input to the numerical model in terms of real material and deformation data. On the basis of these results, petroleum engineers can make informed decisions about the selection of elastomer material and seal geometry appropriate for the well type and conditions encountered. Application developers and researchers can also find this investigation useful in performance analysis and design of swelling elastomer seals.

1996 ◽  
Vol 04 (01) ◽  
pp. 131-150 ◽  
Author(s):  
P. SIREGAR

A central concern in simulation studies is the adequation, or inadequation, of a designed model with respect to its intended goal. Models of cardiac electrical activity may differ in complexity, level of description and representation. Depending on the events to be be simulated, analytical, cellular automatas and qualitative models can be used. Their advantages and shortcomings can be put forth by comparing the space and time complexities, and if factors clinically relevant for studying arrhythmias and ischemias are taken into account in the respective models. In this paper, the factors under scrutiny are those characterizing impulse formation and conduction. If and how they are represented and computed constitutes a means of comparison between the models. The simplifying assumptions built into each can thus be put forth. Through illustrative examples, we then show that qualitative models can assume the explanatory and a predictive role usually devolved to numerical models. Such models can be used as a primer to quantification in a multi-stage process. A possibly useful development would be to integrate the analytical, cellular and qualitative models within a single computational framework. Central to this task is qualification. All piece of knowledge that is implicit in the mathematical or procedural representations has to be made explicit. Semantic links can thereafter be established between the models. This knowledge could be the starting point of a system emulating the reasoning of a theoretician working at different levels of detail. Its role would be to help researchers select, instantiate and interpret results of their most detailed cellular automata and/or analytical models.


2020 ◽  
Author(s):  
Qiang Li ◽  
Tom Gleeson ◽  
Samuel C Zipper ◽  
Ben Kerr

Groundwater pumping can cause streamflow depletion by reducing groundwater discharge to streams and/or inducing surface water infiltration. Analytical and numerical models are two standard methods to predict streamflow depletion. Numerical models require extensive data and efforts to develop robust estimates, while analytical models are easy to implement with low data and experience requirements but are limited by numerous simplifying assumptions. We have pioneered a new approach that balances the shortcomings of analytical and numerical models: analytical depletion functions, which include more empirical functions expanding the applicability of analytical models for real-world settings with complex hydrogeologic landscapes and stream networks. Specifically, analytical depletion functions combine analytical models with stream proximity criteria used to determine which stream segments are most likely to be affected by a pumping well and a depletion apportionment equation which is a geometric method to distribute depletion among the affected stream segments. The accuracy of analytical depletion functions has been tested by comparing against a variety of numerical models from simplified, archetypal models to sophisticated, calibrated models in both steady-state to transient conditions. Estimates of streamflow depletion from analytical depletion function generally agree with estimates from numerical models, suggesting analytical depletion functions are an accurate tool for the streamflow depletion assessment over diverse hydrogeological landscapes and scales. Analytical depletion functions are rapidly and easily implemented and have low data requirements like analytical models but have significant advantages of better agreement with numerical models and better representation of complex stream geometries. Relative to numerical models, analytical depletion functions have limited ability to explore non-pumping related impacts and incorporate subsurface heterogeneity. Analytical depletion functions can be used as a stand-alone tool or part of decision-support tools as preliminary screening of potential groundwater pumping impacts when issuing new and existing water licenses while ensuring streamflow meets environmental flow needs.


Author(s):  
Bahaa Shaqour ◽  
Mohammad Abuabiah ◽  
Salameh Abdel-Fattah ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
...  

AbstractAdditive manufacturing is a promising tool that has proved its value in various applications. Among its technologies, the fused filament fabrication 3D printing technique stands out with its potential to serve a wide variety of applications, ranging from simple educational purposes to industrial and medical applications. However, as many materials and composites can be utilized for this technique, the processability of these materials can be a limiting factor for producing products with the required quality and properties. Over the past few years, many researchers have attempted to better understand the melt extrusion process during 3D printing. Moreover, other research groups have focused on optimizing the process by adjusting the process parameters. These attempts were conducted using different methods, including proposing analytical models, establishing numerical models, or experimental techniques. This review highlights the most relevant work from recent years on fused filament fabrication 3D printing and discusses the future perspectives of this 3D printing technology.


2021 ◽  
Author(s):  
Kyriaki Drymoni ◽  
John Browning ◽  
Agust Gudmundsson

<p>Dykes and inclined sheets are known occasionally to exploit faults as parts of their paths, but the conditions that allow this to happen are still not fully understood. Here we report field observations from a well-exposed dyke swarm of the Santorini volcano, Greece, that show dykes and inclined sheets deflected into faults and the results of analytical and numerical models to explain the conditions for deflection. The deflected dykes and sheets belong to a local swarm of 91 dyke/sheet segments that was emplaced in a highly heterogeneous and anisotropic host rock and partially cut by some regional faults and a series of historic caldera collapses, the caldera walls providing, excellent exposures of the structures. The numerical models focus on a normal-fault dipping 65° with a damage zone composed of parallel layers or zones of progressively more compliant rocks with increasing distance from the fault rupture plane. We model sheet-intrusions dipping from 0˚ to 90˚ and with overpressures of alternatively 1 MPa and 5 MPa, approaching the fault. We further tested the effects of changing (1) the sheet thickness, (2) the fault-zone thickness, (3) the fault-zone dip-dimension (height), and (4) the loading by, alternatively, regional extension and compression. We find that the stiffness of the fault core, where a compliant core characterises recently active fault zones, has pronounced effects on the orientation and magnitudes of the local stresses and, thereby, on the likelihood of dyke/sheet deflection into the fault zone. Similarly, the analytical models, focusing on the fault-zone tensile strength and energy conditions for dyke/sheet deflection, indicate that dykes/sheets are most likely to be deflected into and use steeply dipping recently active (zero tensile-strength) normal faults as parts of their paths.</p>


2020 ◽  
Vol 321 ◽  
pp. 06012
Author(s):  
C. Ciszak ◽  
D. Monceau ◽  
C. Desgranges

In order to limit the ecological impact of air traffic and its operating costs, the aeronautical industry is looking for improving engines efficiencies and substitutes to high density Ni-based superalloys. Thus, a wider use of Ti-alloys operating at higher temperatures is one of the developed solutions. Being able to predict as accurately as possible the oxidation behavior of Ti-based components at high temperatures appears therefore crucial to improve their sizing and durability. Analytical models based on the solid-state diffusion laws can be found in the litterature. They are fairly accurate in most cases, but they reveal some intrinsic limitations in specific cases such as temperature transients or thin components. Numerical models were later developed to break down these limitations. First results from a new numerical tool called “PyTiOx” (still under development are presented here. They confirm the intrinsic limitations of analytical models. In the case of thin samples, the numerical model predicts an increase of scaling kinetic when metal becomes O-saturated, whereas analytical models do not.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
V.Y. Rodyakin ◽  
◽  
V.M. Pikunov ◽  
V.N. Aksenov ◽  
◽  
...  

We present the results of a comparative theoretical analysis of the electron beam bunching in a single-stage klystron amplifier using analytical models, a one-dimensional disk program, and a two-dimensional program. Data on the influence of various one-dimensional and two-dimensional nonlinear effects on the efficiency of electron beam bunching at different values of the space charge parameter and the modulation amplitude are presented. The limits of applicability of analytical and one-dimensional numerical models for electron beam bunching analysis in high-power klystron amplifiers are found.


2020 ◽  
Vol 26 (15-16) ◽  
pp. 1319-1329
Author(s):  
Marcelo A Ceballos ◽  
José E Stuardi

This paper begins with a brief compilation of analytical models typically used to calculate the dynamic response of a conductor span belonging to an overhead transmission line, with a Stockbridge-type damper located near one of its ends. In most of analyses found in the literature, the calculation of the response is done through the superposition of waves that propagate in both longitudinal directions impinging and reflecting at the span ends and at the damper attachment points. The approach proposed in this paper allows obtaining the response as the steady-state solution of the governing differential equations providing suitable analytical expressions for conductors with bending stiffness, which are dispersive media for propagating waves. Using these analytical solutions, the influence of bending stiffness on the efficiency and on the optimal mechanical impedance of the damper, which are of great importance in damper design, can be described explicitly. At the same time, the proposed methodology avoids the need of numerical models or approximate formulas to calculate the bending strains in critical points of the conductor with a single damper.


2003 ◽  
Vol 3 (4) ◽  
pp. 293-300 ◽  
Author(s):  
Y.A. Lawryshyn ◽  
B. Cairns

Disinfection by ultraviolet light (UV) has received wide endorsement as an important contribution to the multiple barrier approach for protection of public health. UV can be used both to disinfect wastewater discharged to the environment, and to disinfect that water when it is picked up again for human consumption. UV readily blocks infectivity by such chlorine-resistant pathogens as Cryptosporidium parvum, Giardia lamblia and Legionella pneumophila. Multiple disinfectant use is now being discussed to broaden the spectrum of pathogens that can be inactivated by using disinfectants in their most strategically advantageous dose and function. Optimizing multiple barrier strategies requires attention to validation of the concepts and technologies involved. UV technology validation ensures that the equipment can deliver the target UV design dose, and that the monitoring/control technology modulates the dose appropriately with changes in water quality or operating conditions. The bioassay approach for UV reactor validation is recommended over analytical and numerical models. Analytical models, which provide an average dose estimate, have been shown to be inadequate. Numerical models, which utilize Computational Fluid Dynamics (CFD) and UV light intensity models to predict reactor performance, can be accurate when used by skilled professionals but require significant validation and/or calibration against bioassay data.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Pankaj Kumar Sharma ◽  
Vijay Gautam ◽  
Atul Kumar Agrawal

Abstract The present work deals with the development of an analytical model incorporating the effects of anisotropy and strain hardening to predict the springback in V-bending of two-ply sheet metal using a punch profile radius of 15 mm and included a bend angle of 90 deg. In the analytical model, the total bending moment is determined from resulting bending stresses for two different layers arranged in parallel planes one above the other and a new radius of curvature after springback is determined by applying a negative bending moment. The two-ply sheet composed of layers of AA1050 and SS430 is characterized for its tensile properties to be used in analytical and numerical models for prediction of springback. To study the effect of each layer during bending operation, two possible cases of sheet placements during bending and springback are studied; i.e., in the first case, the inner layer is of AA1050 while the SS430 layer is the outer layer whereas in the second case it is opposite. In all the cases of springback experiments when the outer layer is of SS430, the springback values are higher than the values obtained with the specimens when the inner layer is of SS430. This could be attributed to the higher tensile strength of the stainless steel layer and the higher bending radius experienced by it. The springback behaviors are also analyzed by simulations using Hill's anisotropic yield criterion in abaqus software. The springback results obtained by simulations and analytical models are in good agreement in general; however, in some cases, discrepancy of more than 15% is observed in the analytical results when compared with the experimental results.


Author(s):  
Zachary Speer ◽  
Jarrett Wise ◽  
Runar Nygaard ◽  
Geir Hareland ◽  
Eric Ford ◽  
...  

Abstract Leakage pathways may develop in wellbores during construction, production, or during and after plug and abandonment (P&A). These pathways are created due to events and conditions during cementing operations, or because of physical and chemical changes after cementing such as changes in temperature and wellbore pressures, and deterioration of the cement. Common leakage pathways develop inside the cement sheath, or as microannuli along the cement-tubing interface. Numerous evidence exists showing that wellbores leak, but there is no verified method to determine if a well will leak or not. To ensure long term wellbore integrity, leakage risks need to be evaluated for plugged and abandoned wells. To evaluate leakage risks from plugged and abandoned wells, numerical finite element models have been developed and used to investigate leakage scenarios during the life of the well. Currently, little work has been done to verify finite element numerical models with experimental data regarding flowpath size in cement sheaths. The aim of this paper is to model previously published experimental data to determine if the finite element models can accurately predict leakage potentials. Two lengths of cemented annuli were modeled, each with conventional and expanding cement to replicate the Aas et. al. [1] experiments. The numerical results show that the simulated microannuli overestimate flow rate compared to experimental data, indicating that flow path dimensions and/or fluid friction factor does not accurately represent the fluid flow in the experiments.


Sign in / Sign up

Export Citation Format

Share Document