beam hardening correction
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 15)

H-INDEX

17
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3284
Author(s):  
Joseph J. Lifton ◽  
Andrew A. Malcolm

Lab-based X-ray computed tomography (XCT) systems use X-ray sources that emit a polychromatic X-ray spectrum and detectors that do not detect all X-ray photons with the same efficiency. A consequence of using a polychromatic X-ray source is that beam hardening artefacts may be present in the reconstructed data, and the presence of such artefacts can degrade XCT image quality and affect quantitative analysis. If the product of the X-ray spectrum and the quantum detection efficiency (QDE) of the detector are known, alongside the material of the scanned object, then beam hardening artefacts can be corrected algorithmically. In this work, a method for estimating the product of the X-ray spectrum and the detector’s QDE is offered. The method approximates the product of the X-ray spectrum and the QDE as a Bézier curve, which requires only eight fitting parameters to be estimated. It is shown experimentally and through simulation that Bézier curves can be used to accurately simulate polychromatic attenuation and hence be used to correct beam hardening artefacts. The proposed method is tested using measured attenuation data and then used to calculate a beam hardening correction for an aluminium workpiece; the beam hardening correction leads to an increase in the contrast-to-noise ratio of the XCT data by 41% and the removal of cupping artefacts. Deriving beam hardening corrections in this manner is more versatile than using conventional material-specific step wedges.


2019 ◽  
Vol 36 (6) ◽  
pp. 515-520 ◽  
Author(s):  
Guoyi Xiu ◽  
Chunying Yuan ◽  
Xiaohua Chen ◽  
Xuesong Li

2019 ◽  
Vol 48 (8) ◽  
pp. 20190235
Author(s):  
Hugo Gaêta-Araujo ◽  
Nicolly Oliveira-Santos ◽  
Danieli Moura Brasil ◽  
Eduarda Helena Leandro do Nascimento ◽  
Daniela Verardi Madlum ◽  
...  

Objectives: To evaluate the influence of the level of three micro-CT reconstruction tools: beam-hardening correction (BHC), smoothing filter (SF), and ring artefact correction (RAC) on the fractal dimension (FD) analysis of trabecular bone. Methods: Five Wistar rats’ maxillae were individually scanned in a SkyScan 1174 micro-CT device, under the following settings: 50 kV, 800 µA, 10.2 µm voxel size, 0.5 mm Al filter, rotation step 0.5°, two frames average, 180° rotation and scan time of 35 min. The raw images were reconstructed under the standard protocol (SP) recommended by the manufacturer, a protocol without any artefact correction tools (P0) and 35 additional protocols with different combinations of SF, RAC and BHC levels. The same volume of interest was established in all reconstructions for each maxilla and the FD was calculated using the Kolmogorov (box counting) method. One-way ANOVA with Dunnet’s post-hoc test was used to compare the FD of each reconstruction protocol (P0–P35) with the SP (α = 5%). Multiple linear regression verified the dependency of reconstruction tools in FD. Results: Overall, FD values are not dependent on RAC (p = 0.965), but increased significantly when the level of BHC and SF increased (p < 0.001). FD values from protocols with BHC at 45% combined with SF of 2, and BHC at 30% combined with SF of 4 or 6 had no statistical difference compared to SP. Conclusions: BHC and SF tools affect the FD values of micro-CT images of the trabecular bone. Therefore, these reconstruction parameters should be standardized when the FD is analyzed.


Sign in / Sign up

Export Citation Format

Share Document