nonlinear convection term
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 1)

2020 ◽  
Vol 20 (4) ◽  
pp. 895-909 ◽  
Author(s):  
Umberto Guarnotta ◽  
Salvatore A. Marano ◽  
Dumitru Motreanu

AbstractIn this paper, the existence of smooth positive solutions to a Robin boundary-value problem with non-homogeneous differential operator and reaction given by a nonlinear convection term plus a singular one is established. Proofs chiefly exploit sub-super-solution and truncation techniques, set-valued analysis, recursive methods, nonlinear regularity theory, as well as fixed point arguments. A uniqueness result is also presented.


Author(s):  
N'Guessan Koffi ◽  
Diabate Nabongo ◽  
Toure Kidjegbo Augustin

This paper concerns the study of the numerical approximation for the following parabolic equations with a nonlinear convection term $$\\ \left\{% \begin{array}{ll} \hbox{$u_t(x,t)=u_{xx}(x,t)-g(u(x,t))u_{x}(x,t)+f(u(x,t)),\quad 0<x<1,\; t>0$,} \\ \hbox{$u_{x}(0,t)=0, \quad u_{x}(1,t)=0,\quad t>0$,} \\ \hbox{$u(x,0)=u_{0}(x) > 0,\quad 0\leq x \leq 1$,} \\ \end{array}% \right. $$ \newline where $f:[0,+\infty)\rightarrow [0,+\infty)$ is $C^3$ convex, nondecreasing function,\\ $g:[0,+\infty)\rightarrow [0,+\infty)$ is $C^1$ convex, nondecreasing function,\newline $\displaystyle\lim_{s\rightarrow +\infty}f(s)=+\infty$, $\displaystyle\lim_{s\rightarrow +\infty}g(s)=+\infty$, $\displaystyle\lim_{s\rightarrow +\infty}\frac{f(s)}{g(s)}=+\infty$\newline and $\displaystyle\int^{+\infty}_{c}\frac{ds}{f(s)}<+\infty$ for $c>0$. We obtain some conditions under which the solution of the semidiscrete form of the above problem blows up in a finite time and estimate its semidiscrete blow-up time. We also prove that the semidiscrete blow-up time converges to the real one, when the mesh size goes to zero. Finally, we give some numerical results to illustrate ours analysis.


2015 ◽  
Vol 8 (6) ◽  
pp. 1331-1339 ◽  
Author(s):  
María Rosa ◽  
◽  
María de los Santos Bruzón ◽  
María de la Luz Gandarias

Sign in / Sign up

Export Citation Format

Share Document