scholarly journals BLOW-UP FOR DISCRETIZATIONS OF SOME REACTION-DIFFUSION EQUATIONS WITH A NONLINEAR CONVECTION TERM

2016 ◽  
Vol 29 (5) ◽  
Author(s):  
D. Nabongo ◽  
N. Koffi ◽  
T.K. Augustin
2020 ◽  
Vol 18 (1) ◽  
pp. 1552-1564
Author(s):  
Huimin Tian ◽  
Lingling Zhang

Abstract In this paper, the blow-up analyses in nonlocal reaction diffusion equations with time-dependent coefficients are investigated under Neumann boundary conditions. By constructing some suitable auxiliary functions and using differential inequality techniques, we show some sufficient conditions to ensure that the solution u ( x , t ) u(x,t) blows up at a finite time under appropriate measure sense. Furthermore, an upper and a lower bound on blow-up time are derived under some appropriate assumptions. At last, two examples are presented to illustrate the application of our main results.


Author(s):  
N'Guessan Koffi ◽  
Diabate Nabongo ◽  
Toure Kidjegbo Augustin

This paper concerns the study of the numerical approximation for the following parabolic equations with a nonlinear convection term $$\\ \left\{% \begin{array}{ll} \hbox{$u_t(x,t)=u_{xx}(x,t)-g(u(x,t))u_{x}(x,t)+f(u(x,t)),\quad 0<x<1,\; t>0$,} \\ \hbox{$u_{x}(0,t)=0, \quad u_{x}(1,t)=0,\quad t>0$,} \\ \hbox{$u(x,0)=u_{0}(x) > 0,\quad 0\leq x \leq 1$,} \\ \end{array}% \right. $$ \newline where $f:[0,+\infty)\rightarrow [0,+\infty)$ is $C^3$ convex, nondecreasing function,\\ $g:[0,+\infty)\rightarrow [0,+\infty)$ is $C^1$ convex, nondecreasing function,\newline $\displaystyle\lim_{s\rightarrow +\infty}f(s)=+\infty$, $\displaystyle\lim_{s\rightarrow +\infty}g(s)=+\infty$, $\displaystyle\lim_{s\rightarrow +\infty}\frac{f(s)}{g(s)}=+\infty$\newline and $\displaystyle\int^{+\infty}_{c}\frac{ds}{f(s)}<+\infty$ for $c>0$. We obtain some conditions under which the solution of the semidiscrete form of the above problem blows up in a finite time and estimate its semidiscrete blow-up time. We also prove that the semidiscrete blow-up time converges to the real one, when the mesh size goes to zero. Finally, we give some numerical results to illustrate ours analysis.


Sign in / Sign up

Export Citation Format

Share Document