steklov eigenvalue problems
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Fei Xu ◽  
Liu Chen ◽  
Qiumei Huang

In this paper, we propose a local defect-correction method for solving the Steklov eigenvalue problem arising from the scalar second order positive definite partial differential equations based on the multilevel discretization. The objective is to avoid solving large-scale equations especially the large-scale Steklov eigenvalue problem whose computational cost increases exponentially. The proposed algorithm transforms the Steklov eigenvalue problem into a series of linear boundary value problems, which are defined in a multigrid space sequence, and a series of small-scale Steklov eigenvalue problems in a coarse correction space. Furthermore, we use the local defect-correction technique to divide the large-scale boundary value problems into small-scale subproblems. Through our proposed algorithm, we avoid solving large-scale Steklov eigenvalue problems. As a result, our proposed algorithm demonstrates significantly improved the solving efficiency. Additionally, we conduct numerical experiments and a rigorous theoretical analysis to verify the effectiveness of our proposed approach.


Author(s):  
Manting Xie ◽  
Fei Xu ◽  
Meiling Yue

In this paper, a type of full multigrid method is proposed to solve non-selfadjoint Steklov eigenvalue problems. Multigrid iterations for corresponding selfadjoint and positive definite boundary value problems generate proper iterate solutions that are subsequently added to the coarsest finite element space in order to improve approximate eigenpairs on the current mesh. Based on this full multigrid, we propose a new type of adaptive finite element method for non-selfadjoint Steklov eigenvalue problems. We prove that the computational work of these new schemes are almost optimal, the same as solving the corresponding positive definite selfadjoint boundary value problems. In this case, these type of iteration schemes certainly improve the overfull efficiency of solving the non-selfadjoint Steklov eigenvalue problem. Some numerical examples are provided to validate the theoretical results and the efficiency of this proposed scheme.


2021 ◽  
Vol 11 (1) ◽  
pp. 304-320
Author(s):  
Said El Manouni ◽  
Greta Marino ◽  
Patrick Winkert

Abstract In this paper we study double phase problems with nonlinear boundary condition and gradient dependence. Under quite general assumptions we prove existence results for such problems where the perturbations satisfy a suitable behavior in the origin and at infinity. Our proofs make use of variational tools, truncation techniques and comparison methods. The obtained solutions depend on the first eigenvalues of the Robin and Steklov eigenvalue problems for the p-Laplacian.


Author(s):  
Edouard Oudet ◽  
Chiu-Yen Kao ◽  
Braxton Osting

Recently Fraser and Schoen showed that the solution of a certain extremal Steklov eigenvalue problem on a compact surface with boundary can be used to generate a free boundary minimal surface, i.e., a surface contained in the ball that has (i) zero mean curvature and (ii) meets the boundary of the ball orthogonally. In this paper, we develop numerical methods that use this connection to realize free boundary minimal surfaces. Namely, on a compact surface, Σ, with genus γ and b boundary components, we maximize σ j (Σ, g) L(∂Σ, g) over a class of smooth metrics, g, where σ j (Σ, g) is the j-th nonzero Steklov eigenvalue and L(∂Σ, g) is the length of ∂Σ.


Author(s):  
Changwei Xiong

Abstract We consider an $n$-dimensional smooth Riemannian manifold $M^n=[0,R)\times \mathbb{S}^{n-1}$ endowed with a warped product metric $g=dr^2+h^2(r)g_{\mathbb{S}^{n-1}}$ and diffeomorphic to a Euclidean ball. Suppose that $M$ has strictly convex boundary. First, for the classical Steklov eigenvalue problem, we derive an optimal lower (upper, respectively) bound for its eigenvalue gaps in terms of $h^{\prime}(R)/h(R)$ when $n\geq 2$ and $Ric_g\geq 0$ ($\leq 0$, respectively). Second, in the same spirit, for two 4th-order Steklov eigenvalue problems studied by Kuttler and Sigillito in 1968, we deduce an optimal lower bound for their eigenvalue gaps in terms of either $h^{\prime}(R)/h^3(R)$ or $h^{\prime}(R)/h(R)$ when $n=2$ and the Gaussian curvature is nonnegative. We also consider optimal estimates on the eigenvalue ratios for these eigenvalue problems.


Author(s):  
Leandro M. Del Pezzo ◽  
Julio D. Rossi ◽  
Ariel M. Salort

In this paper we analyse possible extensions of the classical Steklov eigenvalue problem to the fractional setting. In particular, we find a non-local eigenvalue problem of fractional type that approximates, when taking a suitable limit, the classical Steklov eigenvalue problem.


Sign in / Sign up

Export Citation Format

Share Document