asymmetrical bending
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
pp. 337-352
Author(s):  
Carl Ross ◽  
John Bird ◽  
Andrew Little

2013 ◽  
Vol 10 (86) ◽  
pp. 20130389 ◽  
Author(s):  
Malte Steiner ◽  
Lutz Claes ◽  
Anita Ignatius ◽  
Frank Niemeyer ◽  
Ulrich Simon ◽  
...  

Numerical models of secondary fracture healing are based on mechanoregulatory algorithms that use distortional strain alone or in combination with either dilatational strain or fluid velocity as determining stimuli for tissue differentiation and development. Comparison of these algorithms has previously suggested that healing processes under torsional rotational loading can only be properly simulated by considering fluid velocity and deviatoric strain as the regulatory stimuli. We hypothesize that sufficient calibration on uncertain input parameters will enhance our existing model, which uses distortional and dilatational strains as determining stimuli, to properly simulate fracture healing under various loading conditions including also torsional rotation. Therefore, we minimized the difference between numerically simulated and experimentally measured courses of interfragmentary movements of two axial compressive cases and two shear load cases (torsional and translational) by varying several input parameter values within their predefined bounds. The calibrated model was then qualitatively evaluated on the ability to predict physiological changes of spatial and temporal tissue distributions, based on respective in vivo data. Finally, we corroborated the model on five additional axial compressive and one asymmetrical bending load case. We conclude that our model, using distortional and dilatational strains as determining stimuli, is able to simulate fracture-healing processes not only under axial compression and torsional rotation but also under translational shear and asymmetrical bending loading conditions.


2010 ◽  
Vol 145 ◽  
pp. 93-99 ◽  
Author(s):  
Dian Hua Zhang ◽  
Peng Fei Wang ◽  
Wen Xue Zhang ◽  
Xu Li

When there appeared catastrophic asymmetrical flatness defects in rolling processes, especially when the incoming strip is with a wedge shape, the tilting roll can hardly eliminate these defects completely. Moreover, the overshooting of tilting roll will lead to strip break. In order to improve the ability of cold rolling mill for asymmetrical flatness defects control, performance of the work roll asymmetrical bending as well as the intermediate roll asymmetrical bending has been analyzed, based on the actuator efficiency factors of them. In addition, for the purpose of obtaining accurate efficiency factors matrixes of actuators, a self-learning determination model of actuator efficiency factors was established in accordance with the practical rolling processes. In this paper, a 1250 single stand 6-H reversible UCM cold mill was taken as the object of this study, with efficiency factors of asymmetrical roll bending analyzed, which provides a theoretical basis for better flatness control. Analysis shows that the asymmetrical roll bending is significant for asymmetrical flatness control.


2009 ◽  
Vol 186 (3) ◽  
pp. 437-446 ◽  
Author(s):  
Khanh Huy Bui ◽  
Hitoshi Sakakibara ◽  
Tandis Movassagh ◽  
Kazuhiro Oiwa ◽  
Takashi Ishikawa

Although the widely shared “9 + 2” structure of axonemes is thought to be highly symmetrical, axonemes show asymmetrical bending during planar and conical motion. In this study, using electron cryotomography and single particle averaging, we demonstrate an asymmetrical molecular arrangement of proteins binding to the nine microtubule doublets in Chlamydomonas reinhardtii flagella. The eight inner arm dynein heavy chains regulate and determine flagellar waveform. Among these, one heavy chain (dynein c) is missing on one microtubule doublet (this doublet also lacks the outer dynein arm), and another dynein heavy chain (dynein b or g) is missing on the adjacent doublet. Some dynein heavy chains either show an abnormal conformation or were replaced by other proteins, possibly minor dyneins. In addition to nexin, there are two additional linkages between specific pairs of doublets. Interestingly, all these exceptional arrangements take place on doublets on opposite sides of the axoneme, suggesting that the transverse functional asymmetry of the axoneme causes an in-plane bending motion.


Sign in / Sign up

Export Citation Format

Share Document