ice jam thickness
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 69 (3) ◽  
pp. 275-287
Author(s):  
Jun Wang ◽  
Zhixing Hou ◽  
Hongjian Sun ◽  
Bihe Fang ◽  
Jueyi Sui ◽  
...  

Abstract The appearance of an ice jam in a river crucially distorts local hydrodynamic conditions including water level, flow velocity, riverbed form and local scour processes. Laboratory experiments are used for the first time here to study ice-induced scour processes near a bridge pier. Results show that with an ice sheet cover the scour hole depth around a bridge is increased by about 10% compared to under equivalent open flow conditions. More dramatically, ice-jammed flows induce both greater scour depths and scour variability, with the maximum scour depth under an ice-jammed flow as much as 200% greater than under equivalent open flow conditions. Under an ice-jammed condition, both the maximum depth and length of scour holes around a bridge pier increase with the flow velocity while the maximum scour hole depth increases with ice-jam thickness. Also, quite naturally, the height of the resulting deposition dune downstream of a scour hole responds to flow velocity and ice jam thickness. Using the laboratory data under ice-jammed conditions, predictive relationships are derived between the flow’s Froude number and both the dimensionless maximum scour depth and the dimensionless maximum scour length.


2014 ◽  
Vol 26 (5) ◽  
pp. 762-769 ◽  
Author(s):  
Jun Wang ◽  
Fa-yi Shi ◽  
Pang-pang Chen ◽  
Peng Wu ◽  
Jueyi Sui

1983 ◽  
Vol 10 (3) ◽  
pp. 538-548 ◽  
Author(s):  
Darryl J. Calkins

The equilibrium ice jam thickness given by Pariset et al. is modified to yield a clearer, consistent relationship between the flow hydraulics and thickness. The modified equations are analyzed with respect to a floating ice jam in the main channel with flow also occurring in the floodplain. The final derivation allows the expected ice jam thickness to be computed, given the bed and ice cover roughness coefficients, the channel characteristics, the water surface gradient, and the pre-breakup channel ice cover thickness. The analytical computation for the ice jam thicknesses is compared with prototype data on ice jam thicknesses from four shallow rivers which had significant floodplain flow with the ice jam event. A reasonable correlation between the predicted and measured ice jam thicknesses was obtained. The data suggests that once bankfull depth is exceeded the ice jam thickness does not increase appreciably because of flow diversion to the floodplain. Field measurements of the thickness of the remaining ice jam shear wall along with actual measurements of the ice jam thickness showed a close correlation between the two sets of data.


Sign in / Sign up

Export Citation Format

Share Document