static creep test
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1804
Author(s):  
Wensheng Wang ◽  
Guojin Tan ◽  
Chunyu Liang ◽  
Yong Wang ◽  
Yongchun Cheng

This study aims to study the viscoelastic properties of asphalt mixtures incorporating styrene–butadiene–styrene (SBS) polymer and basalt fiber under freeze–thaw (F-T) cycles by using the static creep test. Asphalt mixture samples incorporating styrene–butadiene–styrene (SBS) polymer and basalt fiber were manufactured following the Superpave gyratory compaction (SGC) method and coring as well as sawing. After 0 to 21 F-T cycles processing, a uniaxial compression static creep test for the asphalt mixture specimens was performed to evaluate the influence of F-T cycles. The results indicated that the F-T cycles caused a larger creep deformation in the asphalt mixtures, which led to a decrease in the rut resistance of the asphalt mixtures incorporating SBS polymer and basalt fiber. Besides, the resistance to deformation decreased significantly in the early stage of F-T cycles. On the other hand, the viscoelastic parameters were analyzed to discuss the variation of viscoelastic characteristics. The relaxation time increased with F-T cycles, which will not be conducive to internal stress dissipation. Compared with lignin fiber, basalt fiber can improve the resistance to high-temperature deformation and the low-temperature crack resistance of asphalt mixtures under F-T cycles.


1997 ◽  
Vol 1590 (1) ◽  
pp. 108-117 ◽  
Author(s):  
Richard P. Izzo ◽  
Joe W. Button ◽  
Maghsoud Tahmoressi

Coarse matrix high binder (CMHB) is a gap-graded hot mix consisting of a large proportion of coarse aggregate with an asphalt binder-filler mastic. CMHB and dense-graded mixtures were compared in terms of their resistance to rutting (permanent deformation), moisture damage, aging, and water permeability. A static creep test was performed to evaluate relative rutting susceptibility. Moisture damage was assessed with the tensile strength ratio (TSR) and a boiling-water test. The effects of aging were evaluated with indirect tensile strength and resilient modulus testing. Penetration and complex shear modulus ( G*) of the recovered, aged asphalt were measured. Permeability was determined with Darcy's Law for flow through saturated, porous media. The static creep test did not indicate that CMHB mixtures were consistently more resistant to rutting in comparison with dense-graded mixtures. CMHB mixtures were found to be more resistant to moisture damage, which was indicated by higher TSR values and less visible stripping than corresponding dense-graded mixtures. The dense-graded mixtures exhibited higher resilient moduli and indirect tensile strengths after short-term and long-term aging. Penetration of binder extracted from aged CMHB mixtures was greater than that from dense-graded mixtures. Binder extracted from aged dense-graded mixtures exhibited higher G* values. The permeability of CMHB mixtures was greater than that of the dense-graded mixtures with comparable air voids.


Sign in / Sign up

Export Citation Format

Share Document