geostationary ring
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 11)

H-INDEX

6
(FIVE YEARS 1)

2020 ◽  
Vol 12 (22) ◽  
pp. 3779
Author(s):  
James L. Carr ◽  
Dong L. Wu ◽  
Jaime Daniels ◽  
Mariel D. Friberg ◽  
Wayne Bresky ◽  
...  

Height assignment is an important problem for satellite measurements of atmospheric motion vectors (AMVs) that are interpreted as winds by forecast and assimilation systems. Stereo methods assign heights to AMVs from the parallax observed between observations from different vantage points in orbit while tracking cloud or moisture features. In this paper, we fully develop the stereo method to jointly retrieve wind vectors with their geometric heights from geostationary satellite pairs. Synchronization of observations between observing systems is not required. NASA and NOAA stereo-winds codes have implemented this method and we processed large datasets from GOES-16, -17, and Himawari-8. Our retrievals are validated against rawinsonde observations and demonstrate the potential to improve the forecast skill. Stereo winds also offer an important mitigation for the loop heat pipe anomaly on GOES-17 during times when warm focal plane temperatures cause infrared channels that are needed for operational height assignments to fail. We also examine several application areas, including deep convection in tropical cyclones, planetary boundary layer dynamics, and fire smoke plumes, where stereo methods provide insights into atmospheric processes. The stereo method is broadly applicable across the geostationary ring where systems offering similar image navigation and registration (INR) performance as GOES-R are deployed.


Author(s):  
James L. Carr ◽  
Dong L. Wu ◽  
Jaime Daniels ◽  
Mariel D. Friberg ◽  
Wayne Bresky ◽  
...  

Height assignment is an important problem for satellite measurements of Atmospheric Motion Vectors (AMVs) that are interpreted as winds by forecast and assimilation systems. Stereo methods assign heights to AMVs from the parallax observed between observations from different vantage points in orbit while tracking cloud or moisture features. In this paper, we fully develop the stereo method to jointly retrieve wind vectors with their geometric heights from geostationary satellite pairs. Synchronization of observations between observing systems is not required. NASA and NOAA stereo-winds codes have implemented this method and we have processed large datasets from GOES-16, -17, and Himawari-8. Our retrievals are validated against rawinsonde observations and demonstrate the potential to improve forecast skill. Stereo winds also offer an important mitigation for the loop heat pipe anomaly on GOES-17 during times when warm focal plane temperatures cause infra-red channels that are needed for operational height assignments to fail. We also examine several application areas, including deep convection in tropical cyclones, planetary boundary layer dynamics, and fire smoke plumes, where stereo methods provide insights into atmospheric processes. The stereo method is broadly applicable across the geostationary ring where systems offering similar Image Navigation and Registration (INR) performance as GOES-R are deployed.


Author(s):  
James L. Carr ◽  
Dong L. Wu ◽  
Jaime Daniels ◽  
Mariel D. Friberg ◽  
Wayne Bresky ◽  
...  

Height assignment is an important problem for satellite measurements of Atmospheric Motion Vectors (AMVs) that are interpreted as winds by forecast and assimilation systems. Stereo methods assign heights to AMVs from the parallax observed between observations from different vantage points in orbit while tracking cloud or moisture features. In this paper, we fully develop the stereo method to jointly retrieve wind vectors with their geometric heights from geostationary satellite pairs. Synchronization of observations between observing systems is not required. NASA and NOAA stereo-winds codes have implemented this method and we have processed large datasets from GOES-16, -17, and Himawari-8. Our retrievals are validated against rawinsonde observations and demonstrate the potential to improve forecast skill. Stereo winds also offer an important mitigation for the loop heat pipe anomaly on GOES-17 during times when warm focal plane temperatures cause infra-red channels that are needed for operational height assignments to fail. We also examine several application areas, including deep convection in tropical cyclones, planetary boundary layer dynamics, and fire smoke plumes, where stereo methods provide insights into atmospheric processes. The stereo method is broadly applicable across the geostationary ring where systems offering similar Image Navigation and Registration (INR) performance as GOES-R are deployed.


2020 ◽  
Author(s):  
Martha Mejía-Kaiser
Keyword(s):  

2020 ◽  
Vol 166 ◽  
pp. 104-112
Author(s):  
Elvis Lacruz ◽  
Daniel Casanova ◽  
Alberto Abad

Sign in / Sign up

Export Citation Format

Share Document