height assignment
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Ross N. Hoffman ◽  
Katherine Lukens ◽  
Kayo Ide ◽  
Kevin Garrett

<p>In this study we propose and test a feature track correction (FTC) observation operator for atmospheric motion vectors (AMVs).  The FTC has four degrees of freedom corresponding to wind speed multiplicative and additive corrections (γ and δ<em><strong>V</strong></em>), a vertical height assignment correction (<em>h</em>), and an estimate of the depth of the layer that contributes to the AMV (Δ<em>z</em>).  Since the effect of the FTC observation operator is to add a bias correction to a weighted average of the profile of background winds an alternate formulation is in terms of a profile of weights (<em>w<sub>k</sub></em>) and δ<em><strong>V </strong></em>.</p><p>The FTC observation operator is tested in the context of a collocation study between AMVs projected onto the collocated Aeolus horizontal line-of-sight (HLOS) and the Aeolus HLOS wind profiles.  This is a prototype for an implementation in a variational data assimilation system and here the Aeolus profiles act as the background in the FTC observation operator.  Results were obtained for ten days of data using modest QC.  The overall OMB or collocation difference SD for a global solution applied to the independent sample is 5.49 m/s with negligible mean.  For comparison the corresponding simple (or pure) collocation SD is 7.85 m/s, and the null solution, which only interpolates the Aeolus profile to the reported height of the AMV and removes the overall bias, has an OMB SD of 7.23 m/s. These values correspond to reductions of variance of 51.0% and 42.3%, due to the FTC observation operator in comparison to the simple collocation and null solution, respectively.</p><p>These preliminary tests demonstrate the potential for the FTC observation operator for </p><ul><li>Improving AMV collocations (including triple collocation) with profile wind data.</li> <li>Characterizing AMVs. For example, summary results for the HLOS winds show that AMVs compare best with wind profiles averaged over a 4.5 km layer centered 0.5 km above the reported AMV height.</li> <li>Improving AMV observation usage within data assimilation (DA) systems. Lower estimated error and more realistic representation of AMVs with variational FTC (VarFTC) should result in greater information extracted.  The FTC observation operator accomplishes this by accounting for the effects of <em>h</em> and Δ<em>z</em>. </li> </ul>


2021 ◽  
Author(s):  
Gert-Jan Marseille

<p>Aeolus was launched in August 2018 and is expected to be operational until 2022. Aeolus is the first Doppler wind lidar in space to measure wind profiles through Rayleigh scattering of an ultra-violet laser beam and the determination of the Doppler shift of the scattered light by molecules along the Line-Of-Sight (LOS). In addition, Mie scattering provides winds on aerosol and cloud particles. The atmosphere return signal is a small bandwidth peak (from Mie scattering) on top of a broadband spectrum (from Rayleigh scattering). The tails and central part of the spectrum are being processed separately to yield so-called Rayleigh channel and Mie channel winds respectively.</p><p>Signals in both channels are being accumulated onboard the satellite to segments of 2.85 km length along the satellite track, denoted measurements. Rayleigh winds are obtained by on-ground processing through accumulating typically 30 measurements to yield a single Rayleigh wind observation of sufficient quality for use in Numerical Weather Prediction (NWP). The vertical resolution of the horizontally projected LOS wind profiles is typically 500 m in the boundary layer, 1 km in the free-troposphere and 1.5-2 km in the stratosphere, but this can and has been changed in a flexible way during the mission.</p><p>In case of clouds and/or aerosols presence within the sensing atmospheric volume, signal from Mie scattering leaks into the Rayleigh channel signal. Since the Rayleigh-channel signal processing assumes a pure molecular signal this so-called Mie contamination causes biases in retrieved winds. This is solved through classifying measurements as either ‘clear’ or ‘cloudy’ before accumulation to observation level. Clear measurements (out of a total of 30) are accumulated to yield a Rayleigh-clear wind. This procedure has proven successful and Aeolus Rayleigh-clear winds are used operationally today by a number of meteorological centers around the world.</p><p>A similar procedure for cloudy measurements is less trivial and requires correction for Mie contamination. So far, implemented corrections were not successful in producing Rayleigh-cloudy winds of sufficient quality for use in NWP. A new correction scheme has been introduced and tested recently and proved successful to produce bias-free winds and a random error slightly larger as compared to Rayleigh-clear winds. The latter is explained by increased heterogeneous atmospheric conditions in which Rayleigh-cloudy winds are obtained. Interestingly, Rayleigh-cloudy and Mie-cloudy winds are obtained for identical atmospheric conditions and as such provide independent information on the atmospheric flow, which allows to characterize the error sources of the different types of wind observations, including instrumental/calibration errors, but also errors due to incorrect height assignment and representativity.</p><p>This paper describes the new scheme to correct Rayleigh winds for Mie contamination and its application to Aeolus data. The results show that resulting Rayleigh-cloudy winds are of good quality to be considered for operational use in NWP.</p>


2020 ◽  
Vol 12 (22) ◽  
pp. 3779
Author(s):  
James L. Carr ◽  
Dong L. Wu ◽  
Jaime Daniels ◽  
Mariel D. Friberg ◽  
Wayne Bresky ◽  
...  

Height assignment is an important problem for satellite measurements of atmospheric motion vectors (AMVs) that are interpreted as winds by forecast and assimilation systems. Stereo methods assign heights to AMVs from the parallax observed between observations from different vantage points in orbit while tracking cloud or moisture features. In this paper, we fully develop the stereo method to jointly retrieve wind vectors with their geometric heights from geostationary satellite pairs. Synchronization of observations between observing systems is not required. NASA and NOAA stereo-winds codes have implemented this method and we processed large datasets from GOES-16, -17, and Himawari-8. Our retrievals are validated against rawinsonde observations and demonstrate the potential to improve the forecast skill. Stereo winds also offer an important mitigation for the loop heat pipe anomaly on GOES-17 during times when warm focal plane temperatures cause infrared channels that are needed for operational height assignments to fail. We also examine several application areas, including deep convection in tropical cyclones, planetary boundary layer dynamics, and fire smoke plumes, where stereo methods provide insights into atmospheric processes. The stereo method is broadly applicable across the geostationary ring where systems offering similar image navigation and registration (INR) performance as GOES-R are deployed.


Author(s):  
James L. Carr ◽  
Dong L. Wu ◽  
Jaime Daniels ◽  
Mariel D. Friberg ◽  
Wayne Bresky ◽  
...  

Height assignment is an important problem for satellite measurements of Atmospheric Motion Vectors (AMVs) that are interpreted as winds by forecast and assimilation systems. Stereo methods assign heights to AMVs from the parallax observed between observations from different vantage points in orbit while tracking cloud or moisture features. In this paper, we fully develop the stereo method to jointly retrieve wind vectors with their geometric heights from geostationary satellite pairs. Synchronization of observations between observing systems is not required. NASA and NOAA stereo-winds codes have implemented this method and we have processed large datasets from GOES-16, -17, and Himawari-8. Our retrievals are validated against rawinsonde observations and demonstrate the potential to improve forecast skill. Stereo winds also offer an important mitigation for the loop heat pipe anomaly on GOES-17 during times when warm focal plane temperatures cause infra-red channels that are needed for operational height assignments to fail. We also examine several application areas, including deep convection in tropical cyclones, planetary boundary layer dynamics, and fire smoke plumes, where stereo methods provide insights into atmospheric processes. The stereo method is broadly applicable across the geostationary ring where systems offering similar Image Navigation and Registration (INR) performance as GOES-R are deployed.


Author(s):  
James L. Carr ◽  
Dong L. Wu ◽  
Jaime Daniels ◽  
Mariel D. Friberg ◽  
Wayne Bresky ◽  
...  

Height assignment is an important problem for satellite measurements of Atmospheric Motion Vectors (AMVs) that are interpreted as winds by forecast and assimilation systems. Stereo methods assign heights to AMVs from the parallax observed between observations from different vantage points in orbit while tracking cloud or moisture features. In this paper, we fully develop the stereo method to jointly retrieve wind vectors with their geometric heights from geostationary satellite pairs. Synchronization of observations between observing systems is not required. NASA and NOAA stereo-winds codes have implemented this method and we have processed large datasets from GOES-16, -17, and Himawari-8. Our retrievals are validated against rawinsonde observations and demonstrate the potential to improve forecast skill. Stereo winds also offer an important mitigation for the loop heat pipe anomaly on GOES-17 during times when warm focal plane temperatures cause infra-red channels that are needed for operational height assignments to fail. We also examine several application areas, including deep convection in tropical cyclones, planetary boundary layer dynamics, and fire smoke plumes, where stereo methods provide insights into atmospheric processes. The stereo method is broadly applicable across the geostationary ring where systems offering similar Image Navigation and Registration (INR) performance as GOES-R are deployed.


2020 ◽  
Vol 12 (14) ◽  
pp. 2255
Author(s):  
Axel Barleben ◽  
Stéphane Haussler ◽  
Richard Müller ◽  
Matthias Jerg

The predictability of aviation turbulence is influenced by energy-intensive flow patterns that are significantly smaller than the horizontal grid scale of current numerical weather prediction (NWP) models. The parameterization of these subgrid scale (SGS) processes is possible by means of an additional prognostic equation for the temporal change of turbulence kinetic energy (TKE), whereby scale transfer terms are used. This turbulence scheme has been applied operationally for 5 years in the NWP model ICON (Icosahedral Nonhydrostatic). The most important of the source terms parameterizes the Kelvin–Helmholtz instability, better known as clear air turbulence. This shear term was subjected to a nowcasting technique, is calculated with satellite data, and shifted forward in time using motion based on optical flow estimates and atmospheric motion vector (AMV). The nowcasts include turbulence altitude as determined by an adapted height assignment scheme presented here. The case studies illustrate that the novel approach for satellite-based turbulence nowcasting is a supplement to the NWP models.


2019 ◽  
Vol 11 (19) ◽  
pp. 2240 ◽  
Author(s):  
David Santek ◽  
Richard Dworak ◽  
Sharon Nebuda ◽  
Steve Wanzong ◽  
Régis Borde ◽  
...  

Atmospheric Motion Vectors (AMVs) calculated by six different institutions (Brazil Center for Weather Prediction and Climate Studies/CPTEC/INPE, European Organization for the Exploitation of Meteorological Satellites/EUMETSAT, Japan Meteorological Agency/JMA, Korea Meteorological Administration/KMA, Unites States National Oceanic and Atmospheric Administration/NOAA, and the Satellite Application Facility on Support to Nowcasting and Very short range forecasting/NWCSAF) with JMA’s Himawari-8 satellite data and other common input data are here compared. The comparison is based on two different AMV input datasets, calculated with two different image triplets for 21 July 2016, and the use of a prescribed and a specific configuration. The main results of the study are summarized as follows: (1) the differences in the AMV datasets depend very much on the ‘AMV height assignment’ used and much less on the use of a prescribed or specific configuration; (2) the use of the ‘Common Quality Indicator (CQI)’ has a quantified skill in filtering collocated AMVs for an improved statistical agreement between centers; (3) Among the six AMV operational algorithms verified by this AMV Intercomparison, JMA AMV algorithm has the best overall performance considering all validation metrics, mainly due to its new height assignment method: ‘Optimal estimation method considering the observed infrared radiances, the vertical profile of the Numerical Weather Prediction wind, and the estimated brightness temperature using a radiative transfer model’.


2019 ◽  
Vol 11 (17) ◽  
pp. 2054 ◽  
Author(s):  
Soo Min Oh ◽  
Régis Borde ◽  
Manuel Carranza ◽  
In-Chul Shin

We derived an atmospheric motion vector (AMV) algorithm for the Geostationary Korea Multipurpose Satellite (GEO-KOMPSAT-2A; GK-2A) launched on 4 December 2018, using the Advanced Himawari Imager (AHI) onboard Himawari-8, which is very similar to the Advanced Meteorological Imager onboard GK-2A. This study clearly describes the main steps in our algorithm and optimizes it for the target box size and height assignment methods by comparing AMVs with numerical weather prediction (NWP) and rawinsonde profiles for July 2016 and January 2017. Target box size sensitivity tests were performed from 8 × 8 to 48 × 48 pixels for three infrared channels and from 16 × 16 to 96 × 96 pixels for one visible channel. The results show that the smaller box increases the speed, whereas the larger one slows the speed without quality control. The best target box sizes were found to be 16 × 16 for CH07, 08, and 13, and 48 × 48 pixels for CH03. Height assignment sensitivity tests were performed for several methods, such as the cross-correlation coefficient (CCC), equivalent blackbody temperature (EBBT), infrared/water vapor (IR/WV) intercept, and CO2 slicing methods for a cloudy target as well as normalized total contribution (NTC) and normalized total cumulative contribution (NTCC) for a clear-air target. For a cloudy target, the CCC method is influenced by the quality of the cloud’s top pressure. Better results were found when using EBBT and IR/WV intercept methods together rather than individually. Furthermore, CO2 slicing had the best statistics. For a clear-air target, the combined use of NTC and NTCC had the best statistics. Additionally, the mean vector difference, root-mean-square (RMS) vector difference, bias, and RMS error (RMSE) between GK-2A AMVs and NWP or rawinsonde were smaller by approximately 18.2% on average than in the case of the Communication, Ocean and Meteorology Satellite (COMS) AMVs. In addition, we verified the similarity between GK-2A and Meteosat Third Generation (MTG) AMVs using the AHI of Himawari-8 from 21 July 2016. This similarity can provide evidence that the GK-2A algorithm works properly because the GK-2A AMV algorithm borrows many methods of the MTG AMV algorithm for geostationary data and inversion layer corrections. The Pearson correlation coefficients in the speed, direction, and height of the prescribed GK-2A and MTG AMVs were larger than 0.97, and the corresponding bias/RMSE were0.07/2.19 m/s, 0.21/14.8°, and 2.61/62.9 hPa, respectively, considering common quality indicator with forecast (CQIF) > 80.


Author(s):  
David Santek ◽  
Richard Dworak ◽  
Sharon Nebuda ◽  
Steve Wanzong ◽  
Régis Borde ◽  
...  

Atmospheric Motion Vectors (AMVs) calculated by six different institutions (Brazil Center for Weather Prediction and Climate Studies/CPTEC/INPE, European Organization for the Exploitation of Meteorological Satellites/EUMETSAT, Japan Meteorological Agency/JMA, Korea Meteorological Administration/KMA, Unites States National Oceanic and Atmospheric Administration/NOAA and the Satellite Application Facility on Support to Nowcasting/NWCSAF) with JMA’s Himawari-8 satellite data and other common input data are here compared. The comparison is based on two different AMV input datasets, calculated with two different image triplets for 21 July 2016, and the use of a prescribed and a specific configuration. The main results of the study are summarized as follows: (1) the differences in the AMV datasets depend very much on the “AMV height assignment” used and much less on the use of a prescribed or specific configuration; (2) the use of the “Common Quality Indicator (CQI)” has a quantified skill in filtering collocated AMVs for an improved statistical agreement between centers; (3) JMA AMV algorithm has the best overall performance considering all validation metrics, most likely due to its height assignment: “optimal estimation using observed radiance and NWP wind vertical profile”.


2019 ◽  
Vol 58 (2) ◽  
pp. 199-211 ◽  
Author(s):  
Wei-Liang Chuang ◽  
Chien-Ben Chou ◽  
Kuang-An Chang ◽  
Yu-Cheng Chang ◽  
Hsin-Lung Chin

AbstractAs the new-generation geostationary satellite Himawari-8 provides a greater frequency and more observation channels than its predecessor, the Multifunctional Transport Satellite series (e.g., MTSAT-2), an opportunity arises to generate atmospheric motion vectors (AMVs) with an increased accuracy and extensive distribution over eastern Asia. In this work AMVs were derived from consecutive images of an infrared-window channel (IR1) of the Himawari-8 satellite using particle image velocimetry (PIV) based on the theory of cross-correlation schemes. A multipass scheme and an adaptive interrogation scheme were also employed to increase spatial resolution and accuracy. For height assignment, an infrared-window method was applied for opaque cloud, while an H2O-intercept method was employed for semitransparent cloud. Validation was conducted by comparing the PIV-derived AMVs with wind fields obtained from NWP analysis, radiosonde observations, and the operational system from the Meteorological Satellite Center (MSC) of the Japan Meteorological Agency (JMA) or JMA/MSC. The comparison of wind velocity maps with the NWP data shows that the PIV-derived AMVs are capable of quantitatively depicting full-field wind field maps and strong jets in atmospheric circulation. Through comparisons with radiosonde observations, the root-mean-square error and wind speed bias (4.29 and −1.05 m s−1) of the PIV-derived AMVs are comparable to, although slightly greater than, that of the NWP data (3.88 and −0.26 m s−1). Based on comparison between the PIV-derived AMVs and wind fields obtained from the JMA/MSC operational system, the PIV-derived AMVs are again comparable, producing a slightly lower error but a larger wind speed bias (−1.05 vs 0.20 m s−1). This also implies that a better height assignment algorithm is necessary.


Sign in / Sign up

Export Citation Format

Share Document