radio quasar
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 257 (2) ◽  
pp. 41
Author(s):  
Nibedita Kalita ◽  
Alok C. Gupta ◽  
Minfeng Gu

Abstract In an optical monitoring program to characterize the variability properties of blazars, we observed 10 sources from the Roma-BZCAT catalog for 26 nights in V and R bands during 2014 October to 2015 June with two telescopes located in India. The sample includes mainly newly discovered BL Lacertae objects (BL Lacs) for which the redshift of some sources is not yet known. We present the results of flux and color variations of the sample on intraday and short timescales obtained by using the power-enhanced F-test and the nested-ANOVA tests, along with their spectral behavior. We find significant intraday variability in the single flat-spectrum radio quasar in our sample, having an amplitude of variation ∼12%. Although a few of the BL Lacs showed probable variation in some nights, none of them passed the variability tests at 99.9% significance level. We find that 78% of the sample showed significant negative color–magnitude correlations, i.e., a redder-when-brighter spectral evolution. Those that do not show strong or clear chromatism predominantly exhibit a redder-when-brighter trend. Unlike on hourly timescales, the high-synchrotron-peaked blazars in the sample (BZGJ0656+4237, BZGJ0152+0147, and BZBJ1728+5013) show strong flux variation on timescales of days to months, where again we detect a decreasing trend of the spectral slope with brightness. We observe a global steepening of the optical spectrum with increasing flux on the intranight timescale for the entire blazar sample. The nonvariability in the BL Lacs in our sample might be caused by the distinct contribution from the disk as well as from other components in the studied energy range.


2021 ◽  
Vol 2021 (10) ◽  
pp. 082
Author(s):  
Foteini Oikonomou ◽  
Maria Petropoulou ◽  
Kohta Murase ◽  
Aaron Tohuvavohu ◽  
Georgios Vasilopoulos ◽  
...  

2021 ◽  
Author(s):  
Filippo D’Ammando ◽  
Roberto Angioni ◽  
Monica Orienti ◽  
Julian Sitarek ◽  
Seiya Nozaki ◽  
...  

2021 ◽  
Vol 913 (2) ◽  
pp. 111
Author(s):  
Qinyuan Zhao ◽  
Luming Sun ◽  
Lu Shen ◽  
Guilin Liu ◽  
Hongyan Zhou ◽  
...  

2020 ◽  
Vol 26 ◽  
pp. 65-76
Author(s):  
K.K. Singh ◽  
P.J. Meintjes ◽  
B. Bisschoff ◽  
F.A. Ramamonjisoa ◽  
B. van Soelen

2020 ◽  
Vol 492 (4) ◽  
pp. 5524-5539 ◽  
Author(s):  
J Otero-Santos ◽  
J A Acosta-Pulido ◽  
J Becerra González ◽  
C M Raiteri ◽  
V M Larionov ◽  
...  

ABSTRACT We report on quasi-periodic variability found in two blazars included in the Steward Observatory Blazar Monitoring data sample: the BL Lac object 3C 66A and the Flat Spectrum Radio Quasar B2 1633+38. We collect optical photometric and polarimetric data in V and R bands of these sources from different observatories: St. Petersburg University, Crimean Astrophysical Observatory, WEBT–GASP, Catalina Real-Time Transient Survey, Steward Observatory, STELLA Robotic Observatory, and Katzman Automatic Imaging Telescope. In addition, an analysis of the γ-ray light curves from Fermi–LAT is included. Three methods are used to search for any periodic behaviour in the data: the Z-transform Discrete Correlation Function, the Lomb–Scargle periodogram and the Weighted Wavelet Z-transform. We find pieces of evidence of possible quasi-periodic variability in the optical photometric data of both sources with periods of ∼3 yr for 3C 66A and ∼1.9 yr for B2 1633+38, with significances between 3σ and 5σ. Only B2 1633+38 shows evidence of this behaviour in the optical polarized data set at a confidence level of 2σ–4σ. This is the first reported evidence of quasi-periodic behaviour in the optical light curve of B2 1633+38. Also, a hint of quasi-periodic behaviour is found in the γ-ray light curve of B2 1633+38 with a confidence level ≥2σ, while no periodicity is observed for 3C 66A in this energy range. We propose different jet emission models that could explain the quasi-periodic variability and the differences found between these two sources.


2019 ◽  
Vol 490 (4) ◽  
pp. 5300-5316 ◽  
Author(s):  
F D’Ammando ◽  
C M Raiteri ◽  
M Villata ◽  
J A Acosta-Pulido ◽  
I Agudo ◽  
...  

ABSTRACT We present a multiwavelength study of the flat-spectrum radio quasar CTA 102 during 2013–2017. We use radio-to-optical data obtained by the Whole Earth Blazar Telescope, 15 GHz data from the Owens Valley Radio Observatory, 91 and 103 GHz data from the Atacama Large Millimeter Array, near-infrared data from the Rapid Eye Monitor telescope, as well as data from the Swift (optical-UV and X-rays) and Fermi (γ-rays) satellites to study flux and spectral variability and the correlation between flux changes at different wavelengths. Unprecedented γ-ray flaring activity was observed during 2016 November–2017 February, with four major outbursts. A peak flux of (2158 ± 63) × 10−8 ph cm−2 s−1, corresponding to a luminosity of (2.2 ± 0.1) × 1050 erg s−1, was reached on 2016 December 28. These four γ-ray outbursts have corresponding events in the near-infrared, optical, and UV bands, with the peaks observed at the same time. A general agreement between X-ray and γ-ray activity is found. The γ-ray flux variations show a general, strong correlation with the optical ones with no time lag between the two bands and a comparable variability amplitude. This γ-ray/optical relationship is in agreement with the geometrical model that has successfully explained the low-energy flux and spectral behaviour, suggesting that the long-term flux variations are mainly due to changes in the Doppler factor produced by variations of the viewing angle of the emitting regions. The difference in behaviour between radio and higher energy emission would be ascribed to different viewing angles of the jet regions producing their emission.


2019 ◽  
Vol 881 (2) ◽  
pp. 125 ◽  
Author(s):  
N. Ding ◽  
Q. S. Gu ◽  
X. F. Geng ◽  
Ding-Rong Xiong ◽  
R. Xue ◽  
...  

2019 ◽  
Vol 627 ◽  
pp. A140
Author(s):  
R. Angioni ◽  
R. Nesci ◽  
J. D. Finke ◽  
S. Buson ◽  
S. Ciprini

Aims. In this paper, we characterize the first γ-ray flaring episode of the flat-spectrum radio quasar PKS 0346−27 (z = 0.991), as revealed by Fermi-LAT monitoring data, and the concurrent multi-wavelength variability observed from radio through X-rays. Methods. We studied the long- and short-term flux and spectral variability from PKS 0346−27 by producing γ-ray light curves with different time binning. We complement the Fermi-LAT data with multi-wavelength observations from the Atacama Large Millimeter Array (radio mm-band), the Rapid Eye Mount telescope (near-infrared) and Swift (optical-UV and X-rays). This quasi-simultaneous multi-wavelength coverage allowed us to construct time-resolved spectral energy distributions (SEDs) of PKS 0346−27 and compare the broadband spectral properties of the source between different activity states using a one-zone leptonic emission model. Results. PKS 0346−27 entered an elevated γ-ray activity state starting from the beginning of 2018. The high-state continued throughout the year, displaying the highest fluxes in May 2018. We find evidence of short-time scale variability down to approximately 1.5 h, which constrains the γ-ray emission region to be compact. The extended flaring period was characterized by a persistently harder spectrum with respect to the quiescent state, indicating changes in the broadband spectral properties of the source. This was confirmed by the multi-wavelength observations, which show a shift in the position of the two SED peaks by approximately two orders of magnitude in energy and peak flux value. As a result, the non-thermal jet emission completely outshines the thermal contribution from the dust torus and accretion disk during the high state. The broadband SED of PKS 0346−27 transitions from a typical Low-Synchrotron-Peaked (LSP) to the Intermediate-Synchrotron-Peaked (ISP) class, a behavior previously observed in other flaring γ-ray sources. Our one-zone leptonic emission model of the high-state SEDs constrains the γ-ray emission region to have a lower magnetic field, larger radius, and higher maximum electron Lorentz factors with respect to the quiescent SED. Finally, we note that the bright and hard γ-ray spectrum observed during the peak of flaring activity in May 2018 implies that PKS 0346−27 could be a promising target for future ground-based Cherenkov observatories such as the Cherenkov Telescope Array (CTA). The CTA could detect such a flare in the low-energy tail of its energy range during a high state such as the one observed in May 2018.


Sign in / Sign up

Export Citation Format

Share Document