normal magnetic field
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 16)

H-INDEX

17
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4063
Author(s):  
Tomoo Nakai

The thin film magneto-impedance sensor is useful for detecting a magnetic material nondestructively. The sensor made by single layer uniaxial amorphous thin film has a tolerance against surface normal magnetic field because of its demagnetizing force in the thickness direction. Our previous study proposed the sensitive driving circuit using 400 MHz high frequency current running through the sensor to detect the logarithmic amplifier. We also confirmed the sensitivity of the sensor within 0.3 T static normal magnetic field, which resulted in detection of 5 × 10−8 T of 5 Hz signal. This paper proposes a nondestructive inspection system for how detecting a contaminant of small tool steel chipping in aluminum casting specimen would be carried out. Three channel array sensors installed in the 30 mT static field detecting area were fabricated and experimentally showed a detection of low remanence magnetic contaminant in a bulk aluminum casing specimen.


2021 ◽  
Author(s):  
Chen Shi ◽  
Anton Artemyev ◽  
Marco Velli ◽  
Anna Tenerani

<p>Magnetic reconnection converts the magnetic field energy into thermal and kinetic energies of the plasma. This process usually happens at extremely fast speed and is therefore believed to be a fundamental mechanism to explain various explosive phenomena such as coronal mass ejections and planetary magnetospheric storms. How magnetic reconnection is triggered from the large magnetohydrodynamic (MHD) scales remains an open question, with some theoretical and numerical studies showing the tearing instability to be involved. Observations in the Earth’s magnetotail and near the magnetopause show that a finite normal magnetic field is usually present inside the reconnecting current sheet. Besides, such a normal field may also exist in the solar corona. However, how this normal magnetic field modifies the tearing instability is not thoroughly studied. Here we discuss the linear tearing instability inside a two-dimensional current sheet with a normal component of magnetic field where the magnetic tension force is balanced by ion flows parallel and anti-parallel to the magnetic field. We solve the dispersion relation of the tearing mode with wave vector parallel to the reconnecting magnetic field. Our results confirm that the finite normal magnetic field stabilizes the tearing mode and makes the mode oscillatory instead of purely growing.</p>


2021 ◽  
Author(s):  
Helmi Malova ◽  
Lev Zelenyi ◽  
Victor Popov ◽  
Elena Grigorenko

<p>Plasma structures with extremely small transverse size (named thin current sheets or TCSs) have been discovered and investigated by spacecraft observations in the Earth's magnetotail, then in other planetary magnetospheres and the solar wind. Their formation is related with complicated dynamic processes in collisionless space plasma near the magnetic reconnection regions. The proposed models describing TCSs in space plasma, based on the assumption of a quasi-adiabatic proton dynamics and magnetized electrons were successful. Various modifications of the initial equilibrium allowed describing such current sheets as the system of current sheets where the central sheet is supported by magnetized electron drifts, and the external sheets are supported by quasi-adiabatic protons and sometimes oxygen ions. Such current configurations are shown to have properties that are completely different from the well-known Harris model, particularly the multiscale structure, embedding and metastability. The structure and evolution of TCSs under the tearing mode as well as the related paradox of complete tearing mode stabilization in configurations with a nonzero normal magnetic field component is highlighted.</p><p>This work is supported by the Russian Science Foundation grant № 20-42-04418.</p>


2021 ◽  
Vol 880 ◽  
pp. 114886
Author(s):  
Qian Hu ◽  
Hong-bo Liu ◽  
Ze Liu ◽  
Dinghan Zhong ◽  
Jiaxin Han ◽  
...  

2020 ◽  
Vol 72 (4) ◽  
Author(s):  
Wen-Cong Chen

Abstract Recently, repeating fast radio bursts (FRBs) with a period of PFRB = 16.35 ± 0.18 d from FRB 180916.J0158+65 were reported. It still remains controversial how such a periodicity might arise for this FRB. In this Letter, based on an assumption of a young pulsar surrounding by a debris disk, we attempt to diagnose whether Lense–Thirring precession of the disk on the emitter can produce the observed periodicity. Our calculations indicate that the Lense–Thirring effect of a tilted disk can result in a precession period of 16 d for a mass inflow rate of 0.5–1.5 × 1018 g s−1, a pulsar spin period of 1–20 ms, and an extremely low viscous parameter α = 10−8 in the disk. The disk mass and the magnetic field of the pulsar are also constrained to be ∼10−3 M⊙ and <2.5 × 1013 G. In our model, a new-born pulsar with normal magnetic field and millisecond period would successively experience the accretion and propeller phases, and is visible as a strong radio source in the current stage. The rotational energy of such a young neutron star can provide the observed radio bursting luminosity for 400 yr.


Sign in / Sign up

Export Citation Format

Share Document