tearing instability
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 12)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 923 (1) ◽  
pp. L13
Author(s):  
Alexander Chernoglazov ◽  
Bart Ripperda ◽  
Alexander Philippov

Abstract We present high-resolution 2D and 3D simulations of magnetized decaying turbulence in relativistic, resistive magnetohydrodynamics. The simulations show dynamic formation of large-scale intermittent long-lived current sheets being disrupted into plasmoid chains by the tearing instability. These current sheets are locations of enhanced magnetic-field dissipation and heating of the plasma. We find magnetic energy spectra ∝k −3/2, together with strongly pronounced dynamic alignment of Elsässer fields and of velocity and magnetic fields, for strong guide-field turbulence, whereas we retrieve spectra ∝k −5/3 for the case of a weak guide-field.


2021 ◽  
Vol 922 (2) ◽  
pp. 219
Author(s):  
M. Nakanotani ◽  
G. P. Zank ◽  
L.-L. Zhao

Abstract Particle acceleration behind a shock wave due to interactions between magnetic islands in the heliosphere has attracted attention in recent years. The downstream acceleration may yield a continuous increase of particle flux downstream of the shock wave. Although it is not obvious how the downstream magnetic islands are produced, it has been suggested that current sheets are involved in the generation of magnetic islands due to their interaction with a shock wave. We perform 2D hybrid kinetic simulations to investigate the interaction between multiple current sheets and a shock wave. In the simulation, current sheets are compressed by the shock wave and a tearing instability develops at the compressed current sheets downstream of the shock. As the result of this instability, the electromagnetic fields become turbulent and magnetic islands form well downstream of the shock wave. We find a “post-cursor” region in which the downstream flow speed normal to the shock wave in the downstream rest frame is decelerated to ∼ 1V A immediately behind the shock wave, where V A is the upstream Alfvén speed. The flow speed then gradually decelerates to 0 accompanied by the development of the tearing instability. We also observe an efficient production of energetic particles above 100 E 0 during the development of the instability some distance downstream of the shock wave, where E 0 = m p V A 2 and m p is the proton mass. This feature corresponds to Voyager observations showing that the anomalous cosmic-ray intensity increase begins some distance downstream of the heliospheric termination shock.


2021 ◽  
Author(s):  
Chen Shi ◽  
Anton Artemyev ◽  
Marco Velli ◽  
Anna Tenerani

<p>Magnetic reconnection converts the magnetic field energy into thermal and kinetic energies of the plasma. This process usually happens at extremely fast speed and is therefore believed to be a fundamental mechanism to explain various explosive phenomena such as coronal mass ejections and planetary magnetospheric storms. How magnetic reconnection is triggered from the large magnetohydrodynamic (MHD) scales remains an open question, with some theoretical and numerical studies showing the tearing instability to be involved. Observations in the Earth’s magnetotail and near the magnetopause show that a finite normal magnetic field is usually present inside the reconnecting current sheet. Besides, such a normal field may also exist in the solar corona. However, how this normal magnetic field modifies the tearing instability is not thoroughly studied. Here we discuss the linear tearing instability inside a two-dimensional current sheet with a normal component of magnetic field where the magnetic tension force is balanced by ion flows parallel and anti-parallel to the magnetic field. We solve the dispersion relation of the tearing mode with wave vector parallel to the reconnecting magnetic field. Our results confirm that the finite normal magnetic field stabilizes the tearing mode and makes the mode oscillatory instead of purely growing.</p>


2020 ◽  
Vol 895 (1) ◽  
pp. L20 ◽  
Author(s):  
Victor Réville ◽  
Marco Velli ◽  
Alexis P. Rouillard ◽  
Benoit Lavraud ◽  
Anna Tenerani ◽  
...  

2020 ◽  
Vol 86 (3) ◽  
Author(s):  
Alfred Mallet

Motivated by recent observations of ‘electron-only’ magnetic reconnection, without an ion-scale sheet or ion outflows, in both the Earth’s magnetosheath and in numerical simulations, we study the formation and reconnection of electron-scale current sheets at low plasma $\unicode[STIX]{x1D6FD}$ . We first show that ideal sheets collapse to thicknesses much smaller than the ion scales, by deriving an appropriate analogue of the Chapman–Kendall collapse solution. Second, we show that, in practice, reconnection onset happens in these collapsing sheets once they reach a critical aspect ratio, because the tearing instability then becomes faster than their collapse time scale. We show that this can happen for sheet thicknesses larger than the ion scale or at only a few times the electron scale, depending on plasma parameters and the aspect ratio of the collapsing structure, thereby unifying the usual picture of ion-coupled reconnection and the new regime of electron-only reconnection. We derive relationships between plasma $\unicode[STIX]{x1D6FD}$ , ion-to-electron temperature ratio, the aspect ratio, electron outflow velocity and the final thickness of the sheets, and thus determine under what circumstances electron-scale sheets form and reconnect.


2020 ◽  
Vol 892 (1) ◽  
pp. 50 ◽  
Author(s):  
Grzegorz Kowal ◽  
Diego A. Falceta-Gonçalves ◽  
Alex Lazarian ◽  
Ethan T. Vishniac
Keyword(s):  

2019 ◽  
Vol 492 (1) ◽  
pp. 549-555 ◽  
Author(s):  
I M Christie ◽  
M Petropoulou ◽  
L Sironi ◽  
D Giannios

ABSTRACT Blazar emission models based on magnetic reconnection succeed in reproducing many observed spectral and temporal features, including the short-duration luminous flaring events. Plasmoids, a self-consistent by-product of the tearing instability in the reconnection layer, can be the main source of blazar emission. Kinetic simulations of relativistic reconnection have demonstrated that plasmoids are characterized by rough energy equipartition between their radiating particles and magnetic fields. This is the main reason behind the apparent shortcoming of plasmoid-dominated emission models to explain the observed Compton ratios of BL Lac objects. Here, we demonstrate that the radiative interactions among plasmoids, which have been neglected so far, can assist in alleviating this contradiction. We show that photons emitted by large, slow-moving plasmoids can be a potentially important source of soft photons to be then upscattered, via inverse Compton, by small fast-moving, neighbouring plasmoids. This interplasmoid Compton scattering process can naturally occur throughout the reconnection layer, imprinting itself as an increase in the observed Compton ratios from those short and luminous plasmoid-powered flares within BL Lac sources, while maintaining energy equipartition between radiating particles and magnetic fields.


Sign in / Sign up

Export Citation Format

Share Document