signature curve
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 4)

H-INDEX

1
(FIVE YEARS 0)

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 903
Author(s):  
Shashikumar Krishnan ◽  
Vijayakumar Vengadasalam

Background: A major player in industry is the induction motor. The constant motion and mechanical nature of motors causes much wear and tear, creating a need for frequent maintenance such as changing contact brushes. Unmannered and infrequent monitoring of motors, as is common in the industry, can lead to overexertion and cause major faults. If a motor fault is detected earlier through the use of automated fault monitoring, it could prevent minor faults from developing into major faults, reducing the cost and down-time of production due the motor repairs. There are few available methods to detect three-phase motor faults. One method is to analyze average vibration signals values of V, I, pf, P, Q, S, THD and frequency. Others are to analyze instantaneous signal signatures of V and I frequencies, or V and I trajectory plotting a Lissajous curve. These methods need at least three sensors for current and three for voltage for a three-phase motor detection. Methods: Our proposed method of monitoring faults in three-phase industrial motors uses Hilbert Transform (HT) instantaneous current signature curve only, reducing the number of sensors required. Our system detects fault signatures accurately at any voltage or current levels, whether it is delta or star connected motors. This is due to our system design, which incorporates normalized curves of HT in the fault analysis database. We have conducted this experiment in our campus laboratory for two different three-phase motors with four different fault experiments. Results: The results shown in this paper are a comparison of two methods, the V and I Lissajous trajectory curve and our HT instantaneous current signature curve. Conclusion: We have chosen them as our benchmark as their fault results closely resemble our system results, but our system benefits such as universality and a cost reduction in sensors of 50%.


2020 ◽  
Vol 13 (5) ◽  
Author(s):  
Peter Essig ◽  
Alexander Leube ◽  
Katharina Rifai ◽  
Siegfried Wahl

Microsaccades are involuntary eye movements occurring naturally during fixation. In this study, microsaccades were investigated under monocularly and binocularly stimulated conditions with respect to their directional distribution and rate signature, that refers to a curve reporting the frequency modulation of microsaccades over time. For monocular stimulation the left eye was covered by an infrared filter. In both stimulation conditions, participants fixated a Gabor patch presented randomly in orientation of 45° or 135° over a wide range of spatial frequencies appearing in the center of a monitor. Considering the microsaccadic directions, this study showed microsaccades to be preferably horizontally oriented in their mean direction, regardless of the spatial characteristics of the grating. Furthermore, this outcome was found to be consistent between both stimulation conditions. Moreover, this study found that the microsaccadic rate signature curve correlates between both stimulation conditions, while the curve given for binocular stimulation was already proposed as a tool for estimation of visual performance in the past. Therefore, this study extends the applicability of microsaccades to clinical use, since parameters as contrast sensitivity, has been measured monocularly in the clinical attitude.


Sign in / Sign up

Export Citation Format

Share Document