fully automated driving
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 12)

H-INDEX

9
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7961
Author(s):  
K. P. Srinivasan ◽  
T. Muthuramalingam

In the present scenario, a considerable assiduity is provided to develop novel human-machine interface technologies that rapidly outpace the capabilities of display technology in automotive industries. It is necessary to use a new cockpit design in conjunction with a fully automated driving environment in order to enhance the driving experience. It can create a seamless and futuristic dashboard for automotive infotainment application. In the present study, an endeavor was made to equip the In-vehicle bezels with printed capacitive sensors for providing superior sensing capabilities. Silver Nanoparticles based interdigitated pattern electrodes were formed over polycarbonate substrates to make printed capacitive sensors using screen printing process. The developed sensor was investigated to evaluate the qualitative and quantitative measures using direct and in-direct contact of touch. The proposed approach for sensors pattern and fabrication can highly impact on sensor performance in automotive infotainment application due to the excellent spatial interpolation with lower cost, light weight, and mechanical flexibility.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6191
Author(s):  
Timur Agliullin ◽  
Robert Gubaidullin ◽  
Airat Sakhabutdinov ◽  
Oleg Morozov ◽  
Artem Kuznetsov ◽  
...  

The work presents an approach to instrument the load-sensing bearings for automotive applications for estimation of the loads acting on the wheels. The system comprises fiber-optic sensors based on addressed fiber Bragg structures (AFBS) with two symmetrical phase shifts. A mathematical model for load–deformation relation is presented, and the AFBS interrogation principle is described. The simulation includes (i) modeling of vehicle dynamics in a split-mu braking test, during which the longitudinal wheel loads are obtained, (ii) the subsequent estimation of bearing outer ring deformation using a beam model with simply supported boundary conditions, (iii) the conversion of strain into central frequency shift of AFBS, and (iv) modeling of the beating signal at the photodetector. The simulation results show that the estimation error of the longitudinal wheel force from the strain data acquired from a single measurement point was 5.44% with a root-mean-square error of 113.64 N. A prototype load-sensing bearing was instrumented with a single AFBS sensor and mounted in a front right wheel hub of an experimental vehicle. The experimental setup demonstrated comparable results with the simulation during the braking test. The proposed system with load-sensing bearings is aimed at estimation of the loads acting on the wheels, which serve as input parameters for active safety systems, such as automatic braking, adaptive cruise control, or fully automated driving, in order to enhance their effectiveness and the safety of the vehicle.


Author(s):  
Nidzamuddin Md. Yusof ◽  
J. Karjanto ◽  
J. M. B. Terken ◽  
F. L. M. Delbressine ◽  
G. W. M. Rauterberg

Many previous studies mention that passive drivers or passengers of fully-automated driving cars have less awareness of the surrounding and more experience to motion sickness symptoms when engaging in non-driving tasks. This occurrence is especially magnified when riding in an urban area with lots of junctions and corners. The aim of the current study is to investigate the effects of peripheral information about upcoming manoeuvres through a vibrotactile display in increasing the fully-automated driving car passengers’ awareness of situations and mitigating their motion sickness level. Twenty participants took part in the experiment which used a Wizard of Oz method to simulate autonomous driving, and the experiment was conducted in an instrumented car on a real road environment. Objective and subjective measurements were gathered. The results show that the implementation of the vibrotactile display increased situation awareness but failed to reduce the motion sickness. This study concludes that in order to mitigate motion sickness inside a fully-automated driving car, more specific information need to be included in the peripheral information. In addition, a device that can actively help in controlling the posture movements should also be implemented in the vehicle.


2020 ◽  
Vol 109 (1) ◽  
pp. 9-38 ◽  
Author(s):  
Christian Armbrüster

Abstract New technologies influence the insurance sector in Germany in many ways. This is also reflected in changes in the legal framework. For example, the German legislator has introduced new rules for highly and fully automated driving. In the future, autonomous driving will raise the question of the effects of the fact that there is no longer a driver on liability and insurance. The article shows that the German system of owner (“holder” or “keeper”) liability in combination with compulsory liability insurance also offers a convincing solution for this challenge, especially with regard to an effective protection of traffic victims. Another field is cyber risks. They have led to the development of a new insurance cover. Digitalisation presents new opportunities for the contract conclusion process and the regulation of insurance claims, but there are also some legal challenges to be addressed. Last but not least, the use of robots and nanotechnology is leading to new types of risks and to modified coverage concepts. This article deals with current developments in Germany.


i-com ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 127-149 ◽  
Author(s):  
Andreas Riegler ◽  
Philipp Wintersberger ◽  
Andreas Riener ◽  
Clemens Holzmann

Abstract Increasing vehicle automation presents challenges as drivers of highly automated vehicles become more disengaged from the primary driving task. However, even with fully automated driving, there will still be activities that require interfaces for vehicle-passenger interactions. Windshield displays are a technology with a promising potential for automated driving, as they are able to provide large content areas supporting drivers in non-driving related activities. However, it is still unknown how potential drivers or passengers would use these displays. This work addresses user preferences for windshield displays in automated driving. Participants of a user study (N=63) were presented two levels of automation (conditional and full), and could freely choose preferred positions, content types, as well as size, transparency levels and importance levels of content windows using a simulated “ideal” windshield display. We visualized the results in form of heatmap data which show that user preferences differ with respect to the level of automation, age, gender, or environment aspects. These insights can help designers of interiors and in-vehicle applications to provide a rich user experience in highly automated vehicles.


Author(s):  
Tamara von Sawitzky ◽  
Philipp Wintersberger ◽  
Andreas Riener ◽  
Joseph L. Gabbard

2019 ◽  
Vol 61 ◽  
pp. 16-28 ◽  
Author(s):  
Kong Joo Shin ◽  
Naoto Tada ◽  
Shunsuke Managi

Sign in / Sign up

Export Citation Format

Share Document