multichannel systems
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 11)

H-INDEX

15
(FIVE YEARS 1)

2020 ◽  
pp. 119-135
Author(s):  
R. Salvador ◽  
M. C. Biagi ◽  
O. Puonti ◽  
M. Splittgerber ◽  
V. Moliadze ◽  
...  

AbstractTranscranial current stimulation (tCS or tES) protocols yield results that are highly variable across individuals. Part of this variability results from differences in the electric field (E-field) induced in subjects’ brains during stimulation. The E-field determines how neurons respond to stimulation, and it can be used as a proxy for predicting the concurrent effects of stimulation, like changes in cortical excitability, and, ultimately, its plastic effects. While the use of multichannel systems with small electrodes has provided a more precise tool for delivering tCS, individually variable anatomical parameters like the shape and thickness of tissues affect the E-field distribution for a specific electrode montage. Therefore, using the same montage parameters across subjects does not lead to the homogeneity of E-field amplitude over the desired targets. Here we describe a pipeline that leverages individualized head models combined with montage optimization algorithms to reduce the variability of the E-field distributions over subjects in tCS. We will describe the different steps of the pipeline – namely, MRI segmentation and head model creation, target specification, and montage optimization – and discuss their main advantages and limitations.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Ling Li ◽  
Lei Tan ◽  
Xinmin Song ◽  
Xuehua Yan

We consider the problem of remote estimation with time delay and multiplicative noise for multichannel systems. First, we apply the reorganized innovation analysis approach to construct the original delay system into a new delay-free system. Secondly, the delay-free system will be reconstructed by the quadratic filtering method to obtain an augmented system. Then, Kalman filtering theory and projection formula are used to solve two Riccati equations and one Lyapunov equation for the augmented system, and the quadratic filter for the measurement delay system on the packet loss network can be obtained. Finally, we use a numerical example to illustrate the effectiveness of the method.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Zahra Ghasemi ◽  
Woongsun Jeon ◽  
Chang-Sei Kim ◽  
Anuj Gupta ◽  
Rajesh Rajamani ◽  
...  

Abstract Estimating central aortic blood pressure (BP) is important for cardiovascular (CV) health and risk prediction purposes. CV system is a multichannel dynamical system that yields multiple BPs at various body sites in response to central aortic BP. This paper concerns the development and analysis of an observer-based approach to deconvolution of unknown input in a class of coprime multichannel systems applicable to noninvasive estimation of central aortic BP. A multichannel system yields multiple outputs in response to a common input. Hence, the relationship between any pair of two outputs constitutes a hypothetical input–output system with unknown input embedded as a state. The central idea underlying our approach is to derive the unknown input by designing an observer for the hypothetical input–output system. In this paper, we developed an unknown input observer (UIO) for input deconvolution in coprime multichannel systems. We provided a universal design algorithm as well as meaningful physical insights and inherent performance limitations associated with the algorithm. The validity and potential of our approach were illustrated using a case study of estimating central aortic BP waveform from two noninvasively acquired peripheral arterial pulse waveforms. The UIO could reduce the root-mean-squared error (RMSE) associated with the central aortic BP by up to 27.5% and 28.8% against conventional inverse filtering (IF) and peripheral arterial pulse scaling techniques.


2019 ◽  
Vol 1368 ◽  
pp. 042047
Author(s):  
G S Voronkov ◽  
P E Filatov ◽  
A Kh Sultanov ◽  
R V Kutluyarov ◽  
I L Vinogradova ◽  
...  
Keyword(s):  

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4277 ◽  
Author(s):  
Xu ◽  
Hu ◽  
Huang ◽  
Tan ◽  
Dong

A spaceborne azimuth multichannel synthetic aperture radar (SAR) system can effectively realize high resolution wide swath (HRWS) imaging. However, the performance of this system is restricted by its two inherent defects. Firstly, non-uniform sampling is generated if the pulse repetition frequency (PRF) deviates from the optimum value. Secondly, multichannel systems are very sensitive to channel errors, which are difficult to completely eliminate. In this paper, we propose a novel receive antenna architecture with an azimuth phase center adaptive adjustment which adjusts the phase center position of each sub-aperture to improve multichannel SAR system performance. On one hand, the optimum value of the PRF can be adaptively adjusted within a certain range by adjusting receiving phase centers to obtain uniform azimuth sampling. On the other hand, false targets introduced by residual channel errors after azimuth multichannel error compensation can be further suppressed. The effectiveness of the proposed method to compensate for non-uniform sampling and suppress false targets is verified by simulation experiments.


2019 ◽  
Vol 56 (10) ◽  
pp. 1027-1040
Author(s):  
Qinghai Xu ◽  
Wanzhong Shi ◽  
Xiangyang Xie ◽  
Changmin Zhang ◽  
Walter L. Manger ◽  
...  

Distributary channels in large deltas can form a channel pattern similar to braided fluvial system or anastomosed fluvial system that have multichannel systems. Although both systems are of generally comparable platforms, their geometry, sedimentology, and facies associations may exhibit unique characteristics. Many ancient multichannel systems have been interpreted as braided patterns, but some are certainly anastomosed patterns. A reevaluation of ancient multichannel architectures and sedimentology patterns is needed to improve discrimination of braided and anastomosed patterns of multichannel systems. This study examines the characteristics of two modern anastomosed pattern channel systems. Those modern systems are compared to ancient examples in the lower Yanchang Formation, southwest Ordos Basin. This comparison indicates that the multichannel systems of the delta, southwest Ordos Basin, exhibit greater similarity to modern anastomosed channel systems of shallow-water deltas. Systems of low-sinuosity distributary channels and interdistributary bays or swamp islands are developed mainly between the channels, and there are no mouth bar deposits. Both modern and ancient multichannel systems suggest that low gradient slope is a significant controlling factor in the formation of anastomosed pattern channels in river-dominated deltas. The identification of anastomosed patterns plays a significant role in reservoir characterization and hydrocarbon exploration and production in delta systems.


Sign in / Sign up

Export Citation Format

Share Document