early mitosis
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 32)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Teemu P Miettinen ◽  
Kevin S Ly ◽  
Alice Lam ◽  
Scott R Manalis

Cell mass and composition change with cell cycle progression. Our previous work characterized buoyant mass accumulation dynamics in mitosis (Miettinen et al., 2019), but how dry mass and cell composition change in mitosis has remained unclear. To better understand mitotic cell growth and compositional changes, we develop a single-cell approach for monitoring dry mass and the density of that dry mass every ~75 seconds with 1.3% and 0.3% measurement precision, respectively. We find that suspension grown mammalian cells lose dry mass and increase dry density following mitotic entry. These changes display large, non-genetic cell-to-cell variability, and the changes are reversed at metaphase-anaphase transition, after which dry mass continues accumulating. The change in dry density causes buoyant and dry mass to differ specifically in early mitosis, thus reconciling existing literature on mitotic cell growth. Mechanistically, the dry composition changes do not require mitotic cell swelling or elongation. Instead, cells in early mitosis increase lysosomal exocytosis, and inhibition of exocytosis prevents the dry composition from changing. Overall, our work provides a new approach for monitoring single-cell dry mass and composition and reveals that mitosis is coupled to extensive exocytosis-mediated secretion of cellular contents.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Chet Huan Oon ◽  
Kenneth E Prehoda

The Par complex dynamically polarizes to the apical cortex of asymmetrically dividing Drosophila neuroblasts where it directs fate determinant segregation. Previously we showed that apically directed cortical movements that polarize the Par complex require F-actin (Oon and Prehoda, 2019). Here we report the discovery of cortical actomyosin dynamics that begin in interphase when the Par complex is cytoplasmic but ultimately become tightly coupled to cortical Par dynamics. Interphase cortical actomyosin dynamics are unoriented and pulsatile but rapidly become sustained and apically-directed in early mitosis when the Par protein aPKC accumulates on the cortex. Apical actomyosin flows drive the coalescence of aPKC into an apical cap that is depolarized in anaphase when the flow reverses direction. Together with the previously characterized role of anaphase flows in specifying daughter cell size asymmetry, our results indicate that multiple phases of cortical actomyosin dynamics regulate asymmetric cell division.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ho-Soo Lee ◽  
Sunwoo Min ◽  
Ye-Eun Jung ◽  
Sunyoung Chae ◽  
June Heo ◽  
...  

AbstractThe chromatin remodeler RSF1 enriched at mitotic centromeres is essential for proper chromosome alignment and segregation and underlying mechanisms remain to be disclosed. We here show that PLK1 recruitment by RSF1 at centromeres creates an activating phosphorylation on Thr236 in the activation loop of Aurora B and this is indispensable for the Aurora B activation. In structural modeling the phosphorylated Thr236 enhances the base catalysis by Asp200 nearby, facilitating the Thr232 autophosphorylation. Accordingly, RSF1-PLK1 is central for Aurora B-mediated microtubule destabilization in error correction. However, under full microtubule-kinetochore attachment RSF1-PLK1 positions at kinetochores, halts activating Aurora B and phosphorylates BubR1, regardless of tension. Spatial movement of RSF1-PLK1 to kinetochores is triggered by Aurora B-mediated phosphorylation of centromeric histone H3 on Ser28. We propose a regulatory RSF1-PLK1 axis that spatiotemporally controls on/off switch on Aurora B. This feedback circuit among RSF1-PLK1-Aurora B may coordinate dynamic microtubule-kinetochore attachment in early mitosis when full tension yet to be generated.


2021 ◽  
Author(s):  
Morgan S Schrock ◽  
Luke Scarberry ◽  
Benjamin R Stromberg ◽  
Claire Sears ◽  
Adrian E Torres ◽  
...  

Mitotic kinesin-like protein 2 (MKLP2) is a motor protein with a well-established function in promoting cytokinesis. However, our results with siRNAs targeting MKLP2 and small molecule inhibitors of MKLP2 (MKLP2i) along with the observations of others suggested a function earlier in mitosis, prior to anaphase. In this study we provide direct evidence that MKLP2 facilitates chromosome congression in prometaphase. We employed live imaging to observe HeLa cells with fluorescently tagged histones treated with MKLP2i and discovered a pronounced chromosome congression defect. We show that MKLP2 inhibited cells had a significant increase in unstable kinetochore-microtubule attachments due to impaired error correction of syntelic attachments. We propose that MKLP2 mediates kinetochore microtubule attachment stability by regulating Aurora Kinase and a downstream target, pHEC1 (Ser 55). Lastly, we show that MKLP2 inhibition results in aneuploidy, confirming that MKLP2 safeguards cells against chromosomal instability.


2021 ◽  
Author(s):  
Xueer Jiang ◽  
Dac Bang Tam Ho ◽  
Karan Mahe ◽  
Jennielee Mia ◽  
Guadalupe Sepulveda ◽  
...  

At the onset of mitosis, centrosomes expand the pericentriolar material (PCM) to maximize their microtubule-organizing activity. This step, termed centrosome maturation, ensures proper spindle organization and faithful chromosome segregation. However, as the centrosome expands, how PCM proteins are recruited and held together without membrane enclosure remains elusive. We found that endogenously expressed pericentrin (PCNT), a conserved PCM scaffold protein, condenses into dynamic granules during late G2/early mitosis before incorporating into mitotic centrosomes. Furthermore, the N-terminal portion of PCNT—enriched with conserved coiled-coils (CCs) and low-complexity regions (LCRs)—phase separates into dynamic condensates that selectively recruit PCM proteins and nucleate microtubules in cells. We propose that CCs and LCRs, two prevalent sequence features in the centrosomal proteome, are preserved under evolutionary pressure in part to mediate liquid-liquid phase separation, a process that bestows upon the centrosome distinct properties critical for its assembly and functions.


2021 ◽  
Author(s):  
Bin Yu ◽  
Qiaoyu Lin ◽  
Chao Huang ◽  
Boyan Zhang ◽  
Ying Wang ◽  
...  

Precise chromosome segregation is mediated by a well-assembled mitotic spindle, which requires balance of the kinase activity of Aurora A (AurA). However, how this kinase activity is regulated remains largely unclear. Here, using in vivo and in vitro assays, we report that conjugation of SUMO2 with AurA at K258 in early mitosis promotes the kinase activity of AurA and facilitates the binding with its activator, Bora. Knockdown of the SUMO proteases SENP3 and SENP5 disrupted the deSUMOylation of AurA, leading to an increased kinase activity and abnormalities in spindle assembly and chromosomes segregation which could be rescued by suppressing the kinase activity of AurA. Collectively, these results demonstrate that SENP3 and SENP5 deSUMOylate AurA to render a spatiotemporal control on its kinase activity in mitosis.


2021 ◽  
Author(s):  
David Gallo ◽  
Jordan T.F. Young ◽  
Jimmy Fourtounis ◽  
Giovanni Martino ◽  
Alejandro Álvarez-Quilón ◽  
...  

Amplification of the gene encoding cyclin E (CCNE1) is an oncogenic driver in several malignancies and is associated with chemoresistance and poor prognosis. To uncover therapeutic targets for CCNE1-amplified tumors, we undertook genome-scale CRISPR/Cas9-based synthetic lethality screens in cellular models of CCNE1 amplification. Here, we report that increasing CCNE1 dosage engenders a vulnerability to the inhibition of the PKMYT1 kinase, a negative regulator of CDK1. To inhibit PKMYT1, we developed RP-6306, an orally bioavailable and selective inhibitor that shows single-agent activity and durable tumor regressions when combined with gemcitabine in models of CCNE1-amplification. RP-6306 treatment causes unscheduled activation of CDK1 selectively in CCNE1 overexpressing-cells, promoting early mitosis in cells undergoing DNA synthesis. CCNE1 overexpression disrupts CDK1 homeostasis at least in part through an early activation of the FOXM1/MYBL2/MuvB-dependent mitotic transcriptional program. We conclude that PKMYT1 inhibition is a promising therapeutic strategy for CCNE1-amplified cancers.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1043
Author(s):  
Lucile M. Jeusset ◽  
Brent J. Guppy ◽  
Zelda Lichtensztejn ◽  
Darin McDonald ◽  
Kirk J. McManus

Chromosome instability (CIN) is an enabling feature of oncogenesis associated with poor patient outcomes, whose genetic determinants remain largely unknown. As mitotic chromatin compaction defects can compromise the accuracy of chromosome segregation into daughter cells and drive CIN, characterizing the molecular mechanisms ensuring accurate chromatin compaction may identify novel CIN genes. In vitro, histone H2B monoubiquitination at lysine 120 (H2Bub1) impairs chromatin compaction, while in vivo H2Bub1 is rapidly depleted from chromatin upon entry into mitosis, suggesting that H2Bub1 removal may be a pre-requisite for mitotic fidelity. The deubiquitinating enzyme USP22 catalyzes H2Bub1 removal in interphase and may also be required for H2Bub1 removal in early mitosis to maintain chromosome stability. In this study, we demonstrate that siRNA-mediated USP22 depletion increases H2Bub1 levels in early mitosis and induces CIN phenotypes associated with mitotic chromatin compaction defects revealed by super-resolution microscopy. Moreover, USP22-knockout models exhibit continuously changing chromosome complements over time. These data identify mitotic removal of H2Bub1 as a critical determinant of chromatin compaction and faithful chromosome segregation. We further demonstrate that USP22 is a CIN gene, indicating that USP22 deletions, which are frequent in many tumor types, may drive genetic heterogeneity and contribute to cancer pathogenesis.


2021 ◽  
Author(s):  
Bryce LaFoya ◽  
Kenneth E. Prehoda

AbstractThe Par complex directs fate determinant segregation from the apical membrane of asymmetrically dividing Drosophila neuroblasts. While the physical interactions that recruit the Par complex have been extensively studied, little is known about how the membrane itself behaves during polarization. We examined the membrane dynamics of neuroblasts and surrounding cells with super-resolution imaging, revealing cellular-scale movements of diverse membrane features during asymmetric division cycles. Membrane domains that are distributed across the neuroblast membrane in interphase become polarized in early mitosis, where they mediate formation of cortical patches of the Par protein aPKC. Membrane and protein polarity cycles are precisely synchronized, and are generated by extensive actin dependent forces that deform the surrounding tissue. In addition to suggesting a role for the membrane in asymmetric division, our results reveal the mechanical nature of the neuroblast polarity cycle.


2021 ◽  
Author(s):  
Chet Huan Oon ◽  
Kenneth E. Prehoda

AbstractThe Par complex is polarized to the apical cortex of asymmetrically dividing Drosophila neuroblasts. Previously we showed that Par proteins are polarized by apically directed cortical movements that require F-actin (Oon and Prehoda, 2019). Here we report the discovery of cortical actin pulses that begin before the Par complex is recruited to the cell cortex and ultimately become tightly coupled to Par protein dynamics. Pulses are initially unoriented in interphase but are rapidly directed towards the apical pole in early mitosis, shortly before the Par protein aPKC accumulates on the cortex. The movements of cortical aPKC that lead to its polarization are precisely correlated with cortical actin pulses and F-actin disruption coincides with immediate loss of movement followed by depolarization. We find that myosin II is a component of the cortical pulses, suggesting that actomyosin pulsatile contractions initiate and maintain apical Par polarity during the neuroblast polarity cycle.


Sign in / Sign up

Export Citation Format

Share Document