colony formation efficiency
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4235-4235
Author(s):  
Giulia Cheloni ◽  
Michele Tanturli ◽  
DeSouza Ho Ngoc ◽  
Yi Shan ◽  
Ignazia Tusa ◽  
...  

Abstract Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell (HSC) disorder due to the 9;22(q34.1;q11.2) reciprocal chromosomal translocation, which results in the generation of BCR/abl "fusion" oncogene and the expression of the BCR/Abl oncoprotein, a constitutively-active tyrosine kinase (TK). To date, chronic-phase CML patients are treated with TK inhibitors (TKi) such as imatinib- mesylate (IM) and dasatinib. However, to eradicate CML, it is necessary to eliminate Leukemia Stem Cells (LSC), which are largely insensitive to TKi. Thus, TKi, rather than curing CML definitively, induce a state of minimal residual disease (MRD) apparently sustained by LSC persistence. Therefore, the identification of non-TKi drugs capable to target and eradicate LSC responsible for MRD and therefore the risk of relapse of disease is of primary importance. LSC, as well as normal HSC, in vivo reside in low oxygen tension areas of the bone marrow (BM) called "HSC niche". Several previous studies from our group and others demonstrate that low oxygen tension maintains the survival and stem cell potential of HSC and LSC, favoring their self-renewal. Interestingly, we also found that the expression of BCR/Abl oncoprotein is suppressed in low oxygen, which well explains the refractoriness of LSC to TKi, provided they manage to survive in the absence of BCR/Abl signaling. Hypoxia-Inducible Factor-1α (HIF-1α) is a key regulator of cell adaptation to low oxygen and of LSC maintenance. This study addresses the in vitro and in vivo effects of the pharmacological inhibition of HIF-1α on the maintenance of CML stem cell potential. After screening several HIF-1α inhibitors, we found that Acriflavine (ACF) induced apoptosis and DNA damage in CML cells and identified ACF as a very effective inhibitor of CML cell survival and growth in low oxygen, as regards the number of viable cells in culture and colony formation efficiency of CML cell lines or human or murine primary cells. Interestingly, ACF did not affect the colony formation efficiency of normal human hematopoietic cells. We also demonstrated in this study that IM and ACF exhibited an at least additive effect as far as the reduction of the total number of viable cells in low oxygen is concerned. Moreover, we demonstrated that low-oxygen incubation of CML cells increased the expression of genes related to stem cell potential, such as Nanog, Sox2 and Oct4, and that ACF treatment reduced their expression. These results on one hand confirmed that hypoxia selects cells with SC potential, on the other hand they demonstrated that ACF treatment reduces their maintenance. Moreover, we evaluated the maintenance of CML stem cell potential using a stem cell assay, demonstrating that ACF suppressed the stem cell potential of CML cell lines or primary cells. On the contrary, IM or Dasatinib, were unable to affect the stem cell potential of CML cells also when administered to primary samples neither TKi-treated before nor carrying primary mutations of BCR/Abl kinase domain. This is in agreement with what observed before by us and others and confirms the refractoriness of LSC to TKi. The effects of ACF in vivo were evaluated using a murine CML model where the disease was induced by a BCR/abl-carrying retrovirus. A 10 day-long ACF treatment was sufficient to attenuate CML development in mice, as evidenced by lower spleen weight, fewer leukemia cells in peripheral blood and BM, and a markedly reduced leukemia cell infiltration into the lungs. Moreover, it was possible to confirm in vivo the effects of ACF on LSC observed in vitro. ACF treatment indeed reduced the maintenance of the Long-Term LSC-containing LSK cell subset (CD34- LSK) in the BM of CML mice. Interestingly and in keeping with the less-severe addiction of HSC to HIF-1α deficiency, we found that non-CML cells were significantly less sensitive to ACF treatment than CML cells. This points to a good therapeutic index of ACF in discriminating leukemic from normal hematopoietic cells. On the basis of all above, the ACF/TKi combination may represent a novel therapeutic approach to target at one time CML cell bulk and LSC, in order to induce remission and prevent MRD of CML. Interestingly, ACF is an already FDA-approved drug for non-oncological uses in humans. Disclosures No relevant conflicts of interest to declare.


2008 ◽  
Vol 82 (16) ◽  
pp. 8215-8223 ◽  
Author(s):  
Jinhong Chang ◽  
Ju-Tao Guo ◽  
Dong Jiang ◽  
Haitao Guo ◽  
John M. Taylor ◽  
...  

ABSTRACT The liver-specific microRNA miR-122 has been shown to be required for the replication of hepatitis C virus (HCV) in the hepatoma cell line Huh7. The aim of this study was to test if HCV replication can be modulated by exogenously expressed miR-122 in human embryonic kidney epithelial cells (HEK-293). Our results demonstrate that miR-122 enhances the colony formation efficiency of the HCV replicon and increases the steady-state level of HCV RNA in HEK-293 cells. Therefore, we conclude that although miR-122 is not absolutely required, it greatly enhances HCV replication in nonhepatic cells.


Blood ◽  
1993 ◽  
Vol 82 (7) ◽  
pp. 2031-2037 ◽  
Author(s):  
MG Cipolleschi ◽  
P Dello Sbarba ◽  
M Olivotto

Bone marrow cell liquid cultures were incubated at various oxygen concentrations ranging from 0% to 18% (air). The total number of cells in culture (CT) at the end of a 6-day incubation was found to be directly proportional to the oxygen concentration. As compared with air- incubated controls, cells recovered from severely hypoxic (1% oxygen) day-5 liquid cultures showed (1) the same day-7 colony-formation efficiency in semisolid culture (neutrophilic/monocytic colonies) or in spleen; (2) a higher day-14 spleen colony-formation efficiency; (3) an enhanced radio-protection ability; and (4) an increased marrow repopulation ability, as measured by determining either total cell number in recipient marrow MRAcell, or the capacity of the latter of generating day-7 neutrophilic/monocytic colonies in secondary in vitro assays (MRACFU-NM). Taking into account CT, the absolute numbers of progenitors in culture were also computed. The results showed that, with respect to time 0, incubation in air produced an increase in the number of day-7 CFUs and a decrease in the number of the other progenitors, whereas in hypoxic cultures all types of progenitors decreased. However, as compared with air-incubated controls, all progenitors, except cells sustaining MRACFU-NM, were reduced in hypoxic cultures. The degree of reduction paralleled the position of the progenitor in the hematopoietic hierarchy, being maximum for day-7 CFUs and null for cells sustaining MRACFU-NM, which, in fact, were better preserved in hypoxic cultures.


Blood ◽  
1993 ◽  
Vol 82 (7) ◽  
pp. 2031-2037 ◽  
Author(s):  
MG Cipolleschi ◽  
P Dello Sbarba ◽  
M Olivotto

Abstract Bone marrow cell liquid cultures were incubated at various oxygen concentrations ranging from 0% to 18% (air). The total number of cells in culture (CT) at the end of a 6-day incubation was found to be directly proportional to the oxygen concentration. As compared with air- incubated controls, cells recovered from severely hypoxic (1% oxygen) day-5 liquid cultures showed (1) the same day-7 colony-formation efficiency in semisolid culture (neutrophilic/monocytic colonies) or in spleen; (2) a higher day-14 spleen colony-formation efficiency; (3) an enhanced radio-protection ability; and (4) an increased marrow repopulation ability, as measured by determining either total cell number in recipient marrow MRAcell, or the capacity of the latter of generating day-7 neutrophilic/monocytic colonies in secondary in vitro assays (MRACFU-NM). Taking into account CT, the absolute numbers of progenitors in culture were also computed. The results showed that, with respect to time 0, incubation in air produced an increase in the number of day-7 CFUs and a decrease in the number of the other progenitors, whereas in hypoxic cultures all types of progenitors decreased. However, as compared with air-incubated controls, all progenitors, except cells sustaining MRACFU-NM, were reduced in hypoxic cultures. The degree of reduction paralleled the position of the progenitor in the hematopoietic hierarchy, being maximum for day-7 CFUs and null for cells sustaining MRACFU-NM, which, in fact, were better preserved in hypoxic cultures.


Sign in / Sign up

Export Citation Format

Share Document