domain interactions
Recently Published Documents


TOTAL DOCUMENTS

634
(FIVE YEARS 125)

H-INDEX

62
(FIVE YEARS 6)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Yaroslav Tsybovsky ◽  
Valentin Sereda ◽  
Marcin Golczak ◽  
Natalia I. Krupenko ◽  
Sergey A. Krupenko

AbstractPutative tumor suppressor ALDH1L1, the product of natural fusion of three unrelated genes, regulates folate metabolism by catalyzing NADP+-dependent conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. Cryo-EM structures of tetrameric rat ALDH1L1 revealed the architecture and functional domain interactions of this complex enzyme. Highly mobile N-terminal domains, which remove formyl from 10-formyltetrahydrofolate, undergo multiple transient inter-domain interactions. The C-terminal aldehyde dehydrogenase domains, which convert formyl to CO2, form unusually large interfaces with the intermediate domains, homologs of acyl/peptidyl carrier proteins (A/PCPs), which transfer the formyl group between the catalytic domains. The 4′-phosphopantetheine arm of the intermediate domain is fully extended and reaches deep into the catalytic pocket of the C-terminal domain. Remarkably, the tetrameric state of ALDH1L1 is indispensable for catalysis because the intermediate domain transfers formyl between the catalytic domains of different protomers. These findings emphasize the versatility of A/PCPs in complex, highly dynamic enzymatic systems.


2021 ◽  
Author(s):  
Ary Lautaro Di Bartolo ◽  
Diego Masone

Synaptotagmin-1 is a low-affinity Ca2+ sensor that triggers synchronous vesicle fusion. It contains two similar C2 domains (C2A and C2B) that cooperate in membrane binding, being the C2B domain the main responsible for the membrane fusion process due to its polybasic patch KRLKKKKTTIKK (321-332). In this work, a master-servant mechanism between two identical C2B domains is shown to control the formation of the fusion stalk. Two regions in C2B are essential for the process, the well-known polybasic patch and a recently described pair of arginines (398,399). The master domain shows strong PIP2 interactions with its polybasic patch and its pair of arginines. At the same time, the servant analogously cooperates with the master to reduce the total work to form the fusion stalk. The strategic mutation (T328E,T329E) in both master and servant domains disrupts the cooperative mechanism, drastically increasing the free energy needed to induce the fusion stalk, however with negligible effects on the master domain interactions with PIP2. These data point to a difference in the behavior of the servant domain, which is unable to sustain its PIP2 interactions neither through its polybasic patch nor through its pair of arginines, in the end losing its ability to assist the master in the formation of the fusion stalk.


2021 ◽  
Author(s):  
Jingjing Liang ◽  
Gordon Ruthel ◽  
Bruce Freedman ◽  
Ronald N. Harty

Ebola (EBOV) and Marburg (MARV) viruses continue to emerge and cause severe hemorrhagic disease in humans. A comprehensive understanding of the filovirus-host interplay will be crucial for identifying and developing antiviral strategies. The filoviral VP40 matrix protein drives virion assembly and egress, in part by recruiting specific WW-domain-containing host interactors via its conserved PPxY Late (L) domain motif to positively regulate virus egress and spread. In contrast to these positive regulators of virus budding, a growing list of WW-domain-containing interactors that negatively regulate virus egress and spread have been identified, including BAG3, YAP/TAZ and WWOX. In addition to host WW-domain regulators of virus budding, host PPxY-containing proteins also contribute to regulating this late stage of filovirus replication. For example, angiomotin (AMOT) is a multi-PPxY-containing host protein that functionally interacts with many of the same WW-domain-containing proteins that regulate virus egress and spread. In this report, we demonstrate that host WWOX, which negatively regulates egress of VP40 VLPs and recombinant VSV-M40 virus, interacts with and suppresses the expression of AMOT. We found that WWOX disrupts AMOT’s scaffold-like tubular distribution and reduces AMOT localization at the plasma membrane via lysosomal degradation. In sum, our findings reveal an indirect and novel mechanism by which modular PPxY/WW-domain interactions between AMOT and WWOX regulate PPxY-mediated egress of filovirus VP40 VLPs. A better understanding of this modular network and competitive nature of protein-protein interactions will help to identify new antiviral targets and therapeutic strategies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Moritz Mühlhofer ◽  
Carsten Peters ◽  
Thomas Kriehuber ◽  
Marina Kreuzeder ◽  
Pamina Kazman ◽  
...  

AbstractHsp26 is a small heat shock protein (sHsp) from S. cerevisiae. Its chaperone activity is activated by oligomer dissociation at heat shock temperatures. Hsp26 contains 9 phosphorylation sites in different structural elements. Our analysis of phospho-mimetic mutations shows that phosphorylation activates Hsp26 at permissive temperatures. The cryo-EM structure of the Hsp26 40mer revealed contacts between the conserved core domain of Hsp26 and the so-called thermosensor domain in the N-terminal part of the protein, which are targeted by phosphorylation. Furthermore, several phosphorylation sites in the C-terminal extension, which link subunits within the oligomer, are sensitive to the introduction of negative charges. In all cases, the intrinsic inhibition of chaperone activity is relieved and the N-terminal domain becomes accessible for substrate protein binding. The weakening of domain interactions within and between subunits by phosphorylation to activate the chaperone activity in response to proteotoxic stresses independent of heat stress could be a general regulation principle of sHsps.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jasmin Mertins ◽  
Jérôme Finke ◽  
Ricarda Antonia Sies ◽  
Kerstin Rink ◽  
Jan Hasenauer ◽  
...  

SNARE proteins have been described as the effectors of fusion events in the secretory pathway more than two decades ago. The strong interactions between SNARE-domains are clearly important in membrane fusion, but it is unclear whether they are involved in any other cellular processes. Here, we analyzed two classical SNARE proteins, syntaxin 1A and SNAP25. Although they are supposed to be engaged in tight complexes, we surprisingly find them largely segregated in the plasma membrane. Syntaxin 1A only occupies a small fraction of the plasma membrane area. Yet, we find it is able to redistribute the far more abundant SNAP25 on the mesoscale by gathering crowds of SNAP25 molecules onto syntaxin-clusters in a SNARE-domain dependent manner. Our data suggests that SNARE-domain interactions are not only involved in driving membrane fusion on the nanoscale, but also play an important role in controlling the general organization of proteins on the mesoscale. Further, we propose this mechanisms preserves active syntaxin 1A-SNAP25 complexes at the plasma membrane.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gerald Ryan R. Aquino ◽  
Philipp Hackert ◽  
Nicolai Krogh ◽  
Kuan-Ting Pan ◽  
Mariam Jaafar ◽  
...  

AbstractEarly pre-60S ribosomal particles are poorly characterized, highly dynamic complexes that undergo extensive rRNA folding and compaction concomitant with assembly of ribosomal proteins and exchange of assembly factors. Pre-60S particles contain numerous RNA helicases, which are likely regulators of accurate and efficient formation of appropriate rRNA structures. Here we reveal binding of the RNA helicase Dbp7 to domain V/VI of early pre-60S particles in yeast and show that in the absence of this protein, dissociation of the Npa1 scaffolding complex, release of the snR190 folding chaperone, recruitment of the A3 cluster factors and binding of the ribosomal protein uL3 are impaired. uL3 is critical for formation of the peptidyltransferase center (PTC) and is responsible for stabilizing interactions between the 5′ and 3′ ends of the 25S, an essential pre-requisite for subsequent pre-60S maturation events. Highlighting the importance of pre-ribosome remodeling by Dbp7, our data suggest that in the absence of Dbp7 or its catalytic activity, early pre-ribosomal particles are targeted for degradation.


2021 ◽  
Author(s):  
Stanley Nithiananatham ◽  
Malina K. Iwanski ◽  
Ignas Gaska ◽  
Himanshu Pandey ◽  
Tatyana Bodrug ◽  
...  

The conserved kinesin-5 bipolar tetrameric motors slide apart microtubules during mitotic spindle assembly and elongation. Kinesin-5 bipolar organization originates from its conserved tetrameric helical minifilament, which position the C-terminal tail domains of two subunits near the N-terminal motor domains of two anti-parallel subunits (Scholey et al, 2014). This unique tetrameric structure enables kinesin-5 to simultaneously engage two microtubules and transmit forces between them, and for multiple kinesin-5 motors to organize via tail to motor interactions during microtubule sliding (Bodrug et al, 2020). Here, we show how these two structural adaptations, the kinesin-5 tail-motor domain interactions and the length of the tetrameric minifilament, determine critical aspects of kinesin-5 motility and sliding mechanisms. An x-ray structure of the 34-nm kinesin-5 minifilament reveals how the dual dimeric N-terminal coiled-coils emerge from the tetrameric central bundle. Using this structure, we generated active bipolar mini-tetrameric motors from Drosophila and human orthologs, which are half the length of native kinesin-5. Using single-molecule motility assays, we show that kinesin-5 tail domains promote mini-tetramers static pauses that punctuate processive motility. During such pauses, kinesin-5 mini-tetramers form multi-motor clusters mediated via tail to motor domain cross-interactions. These clusters undergo slow and highly processive motility and accumulate at microtubule plus-ends. In contrast to native kinesin-5, mini-tetramers require tail domains to initiate microtubule crosslinking. Although mini-tetramers are highly strained in initially aligning microtubules, they slide microtubules more efficiently than native kinesin-5, due to their decreased minifilament flexibility. Our studies reveal that the conserved kinesin-5 motor-tail mediated clustering and the length of the tetrameric minifilament are key features for sliding motility and are critical in organizing microtubules during mitotic spindle assembly and elongation.


2021 ◽  
Author(s):  
Shimin Le ◽  
Miao Yu ◽  
Sterling Martin ◽  
Jeff Hardin ◽  
Jie Yan

The HMP1-HMP2 protein complex, a counterpart of α-catenin–β-catenin complex in C. elegans, mediates the tension transmission between HMR1 (cadherin) and actin cytoskeleton and serves as a critical mechanosensor at the cell–cell adherens junction. The complex has been shown to play critical roles in embryonic development and tissue integrity in C. elegans. The complex is subject to tension due to internal actomyosin contractility and external mechanical micro-environmental perturbations. However, how tension regulates the stability and interaction of HMP1–HMP2 complex has yet to be investigated. Here, we directly quantify the mechanical stability of the full-length HMP1 and its force-bearing modulation domains (M1-M3), and show that they unfold within physiological level of tension (pico-newton scale). The inter-domain interactions within the modulation domain leads to strong mechanical stabilization of M1 in HMP1, resulting in a significantly stronger force threshold to expose the buried vinculin binding site compared to the M1 domain in α-catenins. Moreover, we also quantify the mechanical stability of the inter-molecular HMP1–HMP2 interface and show that it is mechanically stable enough to support the tension-transmission and tension-sensing of the HMP1 modulation domains. Further, we show that single-residue phosphomimetic mutation (Y69E) on HMP2 weakens the mechanical stability of the HMP1–HMP2 interface and thus weakens the force-transmission molecular linkage and the associated mechanosensing functions. Together, these results provide a mechano-biochemical understanding of C. elegans HMP1–HMP2 protein complex’s roles in mechanotransduction.


Sign in / Sign up

Export Citation Format

Share Document