element density
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 0)

H-INDEX

9
(FIVE YEARS 0)

2020 ◽  
Vol 23 (2) ◽  
pp. 536-540 ◽  
Author(s):  
Hoang Van-Nam

Introduction: Conventional topology optimization approaches are implemented in an implicit manner with a very large number of design variables, requiring large storage and computation costs. In this study, an explicit topology optimization approach is proposed by movonal morphable voids whose geometry parameters are considered as design variables. Methods: Each polygonal void plays as an empty-material zone that can move, change its shapes, and overlap with its neighbors in a design space. The geometry eters of MPMVs consisting of the coordinates of polygonal vertices are utilized to render the structure in the design domain in an element density field. The density function of the elements located inside polygonal voids is described by a smooth exponential function that allows utilizing gradient-based optimization solvers. Results & Conclusion: Compared with conventional topology optimization approaches, the MPMV approach uses fewer design variables, ensure mesh-independence solution without filtering techniques or perimeter constraints. Several numerical examples are solved to validate the efficiency of the MPMV approach.



2020 ◽  
Vol 10 (9) ◽  
pp. 3265
Author(s):  
Kazuki Hokari ◽  
Jonas A. Pramudita ◽  
Masato Ito ◽  
Kazuya Okada ◽  
Yuji Tanabe

In this study, a grasping motion simulation method based on finite element analysis was developed for the virtual evaluation of gripping comfort while gripping a cylindrical object. The validity of the grasping motion simulation was verified by comparing the contact pressure distribution generated on the palm of a hand using a finite element model with the measured result obtained via experiments on a human subject. The mean absolute difference between the simulation and experimental results at 23 regions was 7.4 kPa, which was considered to be significantly low and an acceptable value for use in assessment of the gripping comfort score. Furthermore, topology optimization was introduced into the simulation to propose an easy method for obtaining a rough shape of the gripping part of a product that is comfortable to grip. An objective function during the optimization process was defined to minimize the contact pressure concentration level, and this was observed to have a negative correlation with the gripping comfort. The optimization result indicated low element density at the parts in contact with the tips of the index and middle fingers as well as high element density at the parts in contact with the proximal part of the palm. The method allows a designer to evaluate the gripping comfort of a product during the design process and aids in developing a shape that can provide better gripping comfort. Additionally, the method can also be used to reevaluate the gripping comfort of existing products.



2020 ◽  
Vol 8 (5) ◽  
pp. 1567-1570 ◽  
Author(s):  
Mikhail Suyetin ◽  
Thomas Heine

C60−@Zn-MOF-74 operated by an electric field exhibits a combined high switching speed of 27 GB s−1 and a high memory element density of 106 Tb per inch2.



2018 ◽  
Vol 373 (1740) ◽  
pp. 20170045 ◽  
Author(s):  
David C. Burr ◽  
Giovanni Anobile ◽  
Roberto Arrighi

It is now clear that most animals, including humans, possess an ability to rapidly estimate number. Some have questioned whether this ability arises from dedicated numerosity mechanisms, or is derived indirectly from judgements of density or other attributes. We describe a series of psychophysical experiments, largely using adaptation techniques, which demonstrate clearly the existence of a number sense in humans. The number sense is truly general, extending over space, time and sensory modality, and is closely linked with action. We further show that when multiple cues are present, numerosity emerges as the natural dimension for discrimination. However, when element density increases past a certain level, the elements become too crowded to parse, and the scene is perceived as a texture rather than array of elements. The two different regimes are psychophysically discriminable in that they follow distinct psychophysical laws, and show different dependencies on eccentricity, luminance levels and effects of perceptual grouping. The distinction is important, as the ability to discriminate numerosity, but not texture, correlates with formal maths skills. This article is part of the discussion meeting issue ‘The origins of numerical abilities’.



2017 ◽  
Vol 46 (4) ◽  
pp. 404001 ◽  
Author(s):  
贾建权 JIA Jian-quan ◽  
江加丽 JIANG Jia-li ◽  
李佰成 LI Bai-cheng ◽  
王瑞恒 WANG Rui-heng ◽  
梁琨 LIANG Kun ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document