switching speed
Recently Published Documents


TOTAL DOCUMENTS

488
(FIVE YEARS 128)

H-INDEX

30
(FIVE YEARS 5)

Author(s):  
Junji TOMINAGA

Abstract Ge2Sb2Te5 is the most successful phase-change alloy in non-volatile memory using the amorphous-crystal phase transition. In deriving further high performance in switching, especially SET speed (from amorphous to crystal transition) should still be modified. In this work, It was examined an ideal Ge2Sb2Te5 alloy based on the Kolobov model using ab-initio molecular dynamics simulations. As a result, it was cleared that a uniaxial exchange between vacancies and Ge atoms is the crucial role in realizing high-speed switching and a large contrast in the resonance bonding state in the alloy. The vacancy engineering enables the alloy switching speed extremely faster.


2022 ◽  
Vol 17 (01) ◽  
pp. C01048
Author(s):  
A. Morozzi ◽  
M. Hoffmann ◽  
R. Mulargia ◽  
S. Slesazeck ◽  
E. Robutti

Abstract This work aims to investigate the suitability of innovative negative capacitance (NC) devices to be used in High Energy Physics experiments detection systems, featuring self-amplified, segmented, high granularity detectors. Within this framework, MFM (Metal-Ferroelectric-Metal) and MFIM (Metal-Ferroelectric-Insulator-Metal) structures have been investigated within the Technology-CAD environment. The strength of this approach is to exploit the behavior of a simple capacitor to accurately ad-hoc customize the TCAD library aiming at realistically modeling the polarization properties of devices fabricated with ferroelectric materials. The comparison between simulations and measurements in terms of polarization as a function of the applied electric field for both MFM and MFIM devices has been used for modeling and methodologies validation purposes. The analyses and results obtained for MFIM capacitors can be straightforwardly extended to the study of NC-FETs. This work would support the use of the TCAD modeling approach as a predictive tool to optimize the design and the operation of the new generation NC-FET devices for the future High Energy Physics experiments in the HL-LHC scenario. The NC working principle will be employed for particle detection applications in order to exceed the limits imposed by current CMOS technology in terms of power consumption, signal detectability and switching speed.


2021 ◽  
Vol 4 (4) ◽  
pp. 377-385
Author(s):  
Volodymyr M. Lucenko ◽  
Dmytro O. Progonov

Reliable protection of confidential data processed in critical information infrastructure elements of public institutions and private organizations is topical task today. Of particular interest are methods to prevent the leakage of confidential data by localizing informative (dangerous) signals that both carry an informative component, and have a signal level higher than predefined threshold. The increase in signal energy from personal computers is caused by increasing of its transistors switching speed. Modern passive shielding methods for secured computers, similar to the well-known program TEMPEST, require either costly and large shielding units or technological simplification by using of low-cost fragmentary shielding of computer’s individual elements. Therefore, localization of side electromagnetic radiation produced by personal computer is needed. The paper presents a cost-effective approach to reducing the level of computer’s electromagnetic radiation by passive method. The radiation are localized and measured by its estimation on personal computer’s elements, namely unshielded communication lines between video processor and a monitor, fragments of electric tracks on motherboards, etc. During experiments authors used ad-hoc miniature electric (ball antenna) and magnetic (Hall sensor) antennas connected to selective voltmeters. This approach significantly reduces the cost of equipment and measurements as well as requirements to analytics’ qualification for improving computer’s protection. Also, the alternative approach for computer protection is proposed. The approach is based on image content protection by distorting the image on the monitor instead of reducing electromagnetic radiation caused by signals from the monitor. The protection includes image scrambling using Arnold transform that randomly “shuffle” the lines in each frame.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Asghar Askarian

Abstract In optical processing systems, multiplexer is used to design optical devices such as arithmetic logic unit (ALU) and shift register (SR). Through this paper, we investigate the application of nonlinear photonic crystal ring resonator (PhCRR) based on nonlinear Kerr effect for realizing an all optical 2 × 1 multiplexer. The structure consists of two PhCRRs and five optical waveguides using hexagonal lattice silicon (Si) rods with a background of air. Performance of all optical 2 × 1 multiplexer is replicated with the help of finite difference time domain (FDTD) procedure at a wavelength of 1571 nm, and simulations presented an ultra-compact optical structure with ultra-fast switching speed.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1431
Author(s):  
Daniel Hofstetter ◽  
Cynthia Aku-Leh ◽  
Hans Beck ◽  
David P. Bour

An optically activated, enhancement mode heterostructure field effect transistor is proposed and analytically studied. A particular feature of this device is its gate region, which is made of a photovoltaic GaN/AlN-based superlattice detector for a wavelength of 1.55 µm. Since the inter-subband transition in this superlattice does normally not interact with TE-polarized (or vertically incoming) radiation, a metallic second-order diffraction grating on the transistor gate results in a re-orientation of the light into the horizontal direction—thus providing the desired TM-polarization. Upon illumination of this gate, efficient inter-subband absorption lifts electrons from the ground to the first excited quantized state. Due to partial screening of the strong internal polarization fields between GaN quantum wells and AlN barriers, this slightly diagonal transition generates an optical rectification voltage. Added to a constant electrical bias, this optically produced gate voltage leads to a noticeable increase of the transistor’s source-drain current. The magnitude of the bias voltage is chosen to result in maximal transconductance. Since such a phototransistor based on high-bandgap material is a device involving only fast majority carriers, very low dark and leakage currents are expected. The most important advantage of such a device, however, is the expected switching speed and, hence, its predicted use as an optical logic gate for photonic computing. In the absence of a p-n-junction and thus of both a carrier-induced space charge region, and the parasitic capacitances resulting thereof, operation frequencies of appropriately designed, sufficiently small phototransistors reaching 100 GHz are envisaged.


2021 ◽  
Author(s):  
Zhehao Xu ◽  
Xiao Su ◽  
Sicong Hua ◽  
Jiwei Zhai ◽  
Sannian Song ◽  
...  

Abstract For high-performance data centers, huge data transfer, reliable data storage and emerging in-memory computing require memory technology with the combination of accelerated access, large capacity and persistence. As for phase-change memory, the Sb-rich compounds Sb7Te3 and GeSb6Te have demonstrated fast switching speed and considerable difference of phase transition temperature. A multilayer structure is built up with the two compounds to reach three non-volatile resistance states. Sequential phase transition in a relationship with the temperature is confirmed to contribute to different resistance states with sufficient thermal stability. With the verification of nanoscale confinement for the integration of Sb7Te3/GeSb6Te multilayer thin film, T-shape PCM cells are fabricated and two SET operations are executed with 40 ns-width pulses, exhibiting good potential for the multi-level PCM candidate.


2021 ◽  
Author(s):  
Michal Mikulasek ◽  
Pavel Masek ◽  
Martin Stusek ◽  
Lukas Novak ◽  
Radek Mozny ◽  
...  

2021 ◽  
Author(s):  
Peter Hodgson ◽  
Dominic Lane ◽  
Peter Carrington ◽  
Evangelia Delli ◽  
Richard Beanland ◽  
...  

Abstract ULTRARAM is a non-volatile memory with the potential to achieve fast, ultralow-energy electron storage in a floating gate accessed through a triple-barrier resonant tunneling heterostructure. Here we report its implementation on a Si substrate; a vital step towards cost-effective mass production. Sample growth using molecular beam epitaxy commenced with deposition of an AlSb nucleation layer to seed the growth of a GaSb buffer layer, followed by the III-V memory epilayers. Fabricated single-cell memories show clear 0/1 logic-state contrast after ≤10-ms duration program/erase pulses of ~2.5 V, a remarkably fast switching speed for 10- and 20-µm devices. Furthermore, the combination of low voltage and small device capacitance per unit area results in a switching energy that is orders of magnitude lower than dynamic random access memory and flash, for a given cell size. Extended testing of devices revealed retention in excess of 1000 years, and degradation-free endurance of over 107 program/erase cycles, surpassing very recent results for similar devices on GaAs substrates.


2021 ◽  
Vol 11 (19) ◽  
pp. 9138
Author(s):  
Carmine Abbate ◽  
Leandro Colella ◽  
Roberto Di Folco ◽  
Giovanni Busatto ◽  
Emanuele Martano ◽  
...  

The use of a resistive shunt is one of the simplest and most used methods for measuring current in an electronic device. Many researchers use this method to measure drain current during short-circuiting of fast devices such as GaN HEMTs. However, the high switching speed of these devices together with the non-ideality of the shunt resistors produces an overestimation of the current in the initial phases of the transient. In this paper, a passive compensation network is proposed, which is formed by adding an inductor to the voltage measurement circuit and allows an accurate measurement of the current using the resistive shunt even in the presence of very fast devices. The proposed method is validated by simulations and experimental measurements.


2021 ◽  
Vol 12 ◽  
pp. 100-105
Author(s):  
Minsha Shah ◽  
Hitesh Mandaliya ◽  
Lavkesh Lachhvani ◽  
Manu Bajpai ◽  
Rachana Rajpal

Microcontroller based trigger control circuit for fast pulsing of electrode potentials on wide range of time scales has been designed, installed, and tested for electron plasma experiments which are carried out in partial toroidal trap SMall Aspect Ratio Toroidal Electron plasma EXperiment in C – shaped geometry (SMARTEX – C), a device to create and confine non-neutral plasma (electron plasma). The sequence of trap operation is inject-hold-dump for which electrodes need to be pulsed with applied voltages at a high switching speed of few nanoseconds. Also this sequence of operation needs to be controlled over a very wide range of time scales from few microseconds to few seconds. As the available COTS (Commercial-Off-The-Shelf) high voltage DC power supplies generally do not provide this feature of fast switching at nanosecond time scale, MOSFET based circuit is developed which provides fast switching in the range of 20 – 100 nanoseconds of high voltages (200Vdc - 500Vdc) of multiple electrodes. The timing pulse widths of these trigger pulses are controlled using a microcontroller-based circuit. This experimental set-up also requires the triggering of a high current dc power supply used for an Electro-magnet (Toroidal Field Coil) to generate a toroidal magnetic field, at the start of this experiment. For this purpose, a Silicon Controlled Rectifier (SCR) based circuit is used. The gate pulse to trigger the SCR circuit is also generated from this microcontroller-based circuit. National Instrument’s LabVIEW software based Graphical User Interface (GUI) is developed for triggering the SCR and electrodes with a programmable time period through the serial link.


Sign in / Sign up

Export Citation Format

Share Document