neutron shell closure
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
pp. 2150128
Author(s):  
Tabassum Naz ◽  
Shakeb Ahmad ◽  
H. Abusara

A systematic study of shapes in Ni [Formula: see text] isotopes has been made in the Relativistic–Hartree–Bogoliubov (RHB) formalism with two types of density-dependent NN interactions which are based on the range of meson-exchange. The constraint calculations assuming the axial and triaxial-symmetry predict the shape isomerism in the case of [Formula: see text] isotopes. Significant jumps at [Formula: see text] in the binding energy per nucleon (BE/A) and in the [Formula: see text] correspond to the neutron shell closure, and [Formula: see text] as doubly magic nuclei. The present calculation supports the recently reported calculations using the non-relativistic Hartree–Fock (HF) Skyrme SIII [1] interaction predicting the importance of tensor parameter in order to reproduce the experimental findings of the proton level crossing at [Formula: see text]. The results obtained are in agreement with experiment and with other theoretical studies.


Author(s):  
R.K. Biju ◽  
K. Prathapan ◽  
K.P. Anjali

The possibility for the existence of 1-neutron and 2-neutron halo nuclei through the decay of even-even nuclei 270-316116, 272-318118 and 278-320120 in the super-heavy region is studied within the frame work of the Coulomb and Proximity Potential Model (CPPM). Halo structure in neutron rich nuclei with Z<=20  is identified by calculating the neutron separation energies and on the basis of potential energy considerations. The 1n + core configuration of proposed 1-neutron halo nuclei between z=10  and Z=20 is found shifted to 2n + core configuration in higher angular momentum states. The calculation of half-life of decay is performed by considering the proposed halo nuclei as spherical cluster and as deformed nuclei with a rms radius. Except for 15C, the half-life of decay is found decreased when the rms radius is considered. Only the 1-neutron halo nuclei 26F and 55Ca showed half-lives of decay which are less than the experimental limit. None of the proposed 2-neutron halo nuclei have shown a half-life of decay lower than the experimental limit. Also, the probability for the emission of neutron halo nuclei is found to be less in super-heavy region when compared with the clusters of same isotope family. Further, neutron shell closure at neutron numbers 150, 164 and 184 is identified form the plot of  log10 T1/2 verses the neutron number of parents. The plots of Q-1/2 verses log10 T1/2 and -ln P verses log10 T1/2 for various halo nuclei emitted from the super-heavy elements are found to be linear showing that Geiger-Nuttall law is applicable to the emission of neutron halo also.


2019 ◽  
Vol 28 (06) ◽  
pp. 1950043 ◽  
Author(s):  
S. S. Hosseini ◽  
H. Hassanabadi ◽  
Dashty T. Akrawy ◽  
S. Zarrinkamar

The [Formula: see text]-decay (AD) half-life (HL) of [Formula: see text]Po [Formula: see text] isotopes is studied systematically within the modified Coulomb and proximity potential model (MCPPM). The computed HLs are compared with the existing theoretical formulae including Royer, AKRE, Ren B and MRen B. This study considers the role of neutron shell closure [Formula: see text] on the AD HLs. The comparison with the experimental data indicates the acceptability of the results.


2018 ◽  
Vol 98 (2) ◽  
Author(s):  
M. P. Reiter ◽  
S. Ayet San Andrés ◽  
E. Dunling ◽  
B. Kootte ◽  
E. Leistenschneider ◽  
...  

2018 ◽  
Vol 178 ◽  
pp. 02013 ◽  
Author(s):  
V. Werner ◽  
M. Lettmann ◽  
C. Lizarazo ◽  
W. Witt ◽  
D. Cline ◽  
...  

The region of neutron-rich nuclei above the N = 50 magic neutron shell closure encompasses a rich variety of nuclear structure, especially shapeevolutionary phenomena. This can be attributed to the complexity of sub-shell closures, their appearance and disappearance in the region, such as the N = 56 sub shell or Z = 40 for protons. Structural effects reach from a shape phase transition in the Zr isotopes, over shape coexistence between spherical, prolate, and oblate shapes, to possibly rigid triaxial deformation. Recent experiments in this region and their main physics viewpoints are summarized.


2016 ◽  
Vol 25 (09) ◽  
pp. 1650062 ◽  
Author(s):  
S. Mahapatro ◽  
C. Lahiri ◽  
Bharat Kumar ◽  
R. N. Mishra ◽  
S. K. Patra

We study nuclear structure properties for various isotopes of Ytterbium (Yb), Hafnium(Hf), Tungsten(W), Osmium(Os), Platinum(Pt) and Mercury(Hg) in [Formula: see text] = 70–80 drip-line region starting from [Formula: see text] to [Formula: see text] within the formalism of relativistic mean field (RMF) theory. The pairing correlation is taken care by using BCS approach. We compared our results with finite range droplet model(FRDM) and experimental data and found that the calculated results are in good agreement. Neutron shell closure is obtained at [Formula: see text] and [Formula: see text] in this region. We have also studied probable decay mechanisms of these elements.


2015 ◽  
Vol 42 (9) ◽  
pp. 095105 ◽  
Author(s):  
P V Laveen ◽  
E Prasad ◽  
N Madhavan ◽  
S Pal ◽  
J Sadhukhan ◽  
...  

2013 ◽  
Vol 22 (11) ◽  
pp. 1350081 ◽  
Author(s):  
K. P. SANTHOSH ◽  
B. PRIYANKA

The alpha-decay half-lives of the 24 isotopes of Eu (Z = 63) nuclei in the region 130≤A≤153, have been studied systematically within the Coulomb and proximity potential model (CPPM). We have modified the assault frequency and re-determined the half-lives and they show a better agreement with the experimental value. We have also done calculations on the half-lives within the recently proposed Coulomb and proximity potential model for deformed nuclei (CPPMDN). The computed half-lives are compared with the experimental data and they are in good agreement. Using our model, we could also demonstrate the influence of the neutron shell closure at N = 82, in both parent and daughter nuclei, on the alpha-decay half-lives.


Sign in / Sign up

Export Citation Format

Share Document