propionic acid derivative
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Koichiro Adachi ◽  
Yuki Sugitani ◽  
Ryo Unita ◽  
Kosuke Yoshida ◽  
Satoru Beppu ◽  
...  

Abstract Background Loxoprofen is a propionic acid derivative and is the most widely prescribed non-steroidal anti-inflammatory drug in Japan. Loxoprofen is generally considered to be relatively nontoxic. Case presentation A 33-year-old man (body weight, 55 kg) who intentionally took an overdose of 100 tablets of loxoprofen (6000 mg) as a suicide attempt was emergently admitted to Kyoto Medical Center. On arrival, the patient was suffering disorders of consciousness. His plasma concentrations of loxoprofen and its reduced trans-alcohol metabolite were 52 and 24 μg/mL, 3.7 and 2.3 μg/mL, 0.81 and 0.54 μg/mL, and 0.015 and 0.011 μg/mL, respectively, at 4, 26, 50, and 121 h after the oral overdose. The observed apparent terminal elimination half-life of loxoprofen during days 1 and 2 of hospitalization was in the range 6–12 h, which is several times longer than the reported normal value. This finding implied nonlinearity of loxoprofen pharmacokinetics over the current 100-fold dose range, which could affect the accuracy of values simulated by a simplified physiologically based pharmacokinetic (PBPK) model founded on data from a normal dose of 60 mg. The reasons for the delayed eliminations from plasma of loxoprofen and its trans-alcohol metabolite in this case are uncertain, but slight renal impairment (low eGFR values) developed on the second and third hospital days and could be a causal factor. Conclusions Because the patient’s level of consciousness had gradually improved, he was discharged on the fourth day of hospitalization. The virtual plasma exposures of loxoprofen and its reduced trans-alcohol metabolite estimated using the current simplified PBPK model were lower than the measured values in the overdose case. The present results based on drug monitoring data and pharmacokinetic predictions could serve as a useful guide in cases of loxoprofen overdose.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 112 ◽  
Author(s):  
Riya Shrestha ◽  
Pil Cho ◽  
Sanjita Paudel ◽  
Aarajana Shrestha ◽  
Mi Kang ◽  
...  

Loxoprofen, a propionic acid derivative, non-steroidal anti-inflammatory drug (NSAID) is a prodrug that is reduced to its active metabolite, trans-alcohol form (Trans-OH) by carbonyl reductase enzyme in the liver. Previous studies demonstrated the hydroxylation and glucuronidation of loxoprofen. However, the specific enzymes catalyzing its metabolism have yet to be identified. In the present study, we investigated metabolic enzymes, such as cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT), which are involved in the metabolism of loxoprofen. Eight microsomal metabolites of loxoprofen were identified, including two alcohol metabolites (M1 and M2), two mono-hydroxylated metabolites (M3 and M4), and four glucuronide conjugates (M5, M6, M7, and M8). Based on the results for the formation of metabolites when incubated in dexamethasone-induced microsomes, incubation with ketoconazole, and human recombinant cDNA-expressed cytochrome P450s, we identified CYP3A4 and CYP3A5 as the major CYP isoforms involved in the hydroxylation of loxoprofen (M3 and M4). Moreover, we identified that UGT2B7 is the major UGT isoform catalyzing the glucuronidation of loxoprofen and its alcoholic metabolites. Further experimental studies should be carried out to determine the potency and toxicity of these identified metabolites of loxoprofen, in order to fully understand of mechanism of loxoprofen toxicity.


2016 ◽  
pp. 1106-1110 ◽  
Author(s):  
Richard O. Day ◽  
Garry G. Graham ◽  
Kenneth Williams

Author(s):  
Richard O. Day ◽  
Garry G. Graham ◽  
Kenneth Williams

2010 ◽  
Vol 46 (1) ◽  
pp. 99-107 ◽  
Author(s):  
Rabia Bushra ◽  
Muhammad Harris Shoaib ◽  
Nousheen Aslam ◽  
Zafar Alam Mehmood ◽  
Durriya Hashmat

Ibuprofen is a propionic acid derivative that belongs to the class NSAIDs. Major adverse reactions associated with Ibuprofen are related to GIT and include peptic and mucosal ulcers, dyspepsia, severe gastric pain and bleeding, that results in excessive treatment failure. The goal of this study was to develop enteric coated ibuprofen tablets in order to avoid gastric mucosal irritation, diffusion of drug across mucosal lining and to let active ingredient be absorbed easily in small intestine. The formulation was developed and manufactured through the direct compression process, the simplest, easiest and most economical method of manufacturing. Enteric coating was done using an Opadry white subcoating and an aqueous coating dispersion of Acryl-Eze. Enteric coated formulation was subjected to disintegration and dissolution tests by placing in 0.1 M hydrochloric acid for 2 h and then 1 h in phosphate buffer with a pH of 6.8. About 0.04% of drug was released in the acidic phase and 99.05% in the basic medium. These results reflect that ibuprofen can be successfully enteric coated in order to prevent its release in the stomach and facilitate rapid release of the drug in the duodenum, due to the presence of superdisintegrant. Formulating this enteric coated tablets could increase patient compliance by decreasing adverse drug reactions (ADR S) associated with Ibuprofen therapy.


Sign in / Sign up

Export Citation Format

Share Document