laser induce fluorescence
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1324
Author(s):  
Javier García-Alba ◽  
Javier Bárcena ◽  
Andrés García

The evolution of positively buoyant jets was studied with non-intrusive techniques—Particle Image Velocimetry (PIV) and Laser Induce Fluorescence (LIF)—by analyzing four physical tests in their four characteristic zones: momentum dominant zone (jet-like), momentum to buoyancy transition zone (jet to plume), buoyancy dominant zone (plume-like), and lateral dispersion dominant zone. Four configurations were tested modifying the momentum and the buoyancy of the effluent through variations of flow discharge and the thermal gradient with the receiving water body, respectively. The physical model results were used to evaluate the performance of numerical models to describe such flows. Furthermore, a new method to delimitate the four characteristic zones of positively buoyant jets interacting with the water-free surface was proposed using the angle (α) shaped by the tangent of the centerline trajectory and the longitudinal axis. Physical model results showed that the dispersion of mass (concentrations) was always greater than the dispersion of energy (velocity) during the evolution of positively buoyant jets. The semiempirical models (CORJET and VISJET) underestimated the trajectory and overestimated the dilution of positively buoyant jets close to the impact zone with the water-free surface. The computational fluid dynamics (CFD) model (Open Field Operation And Manipulation model (OpenFOAM)) is able to reproduce the behavior of positively buoyant jets for all the proposed zones according to the physical results.


2012 ◽  
Vol 12 (24) ◽  
pp. 11997-12019 ◽  
Author(s):  
J. A. Huffman ◽  
B. Sinha ◽  
R. M. Garland ◽  
A. Snee-Pollmann ◽  
S. S. Gunthe ◽  
...  

Abstract. As a part of the AMAZE-08 campaign during the wet season in the rainforest of central Amazonia, an ultraviolet aerodynamic particle sizer (UV-APS) was operated for continuous measurements of fluorescent biological aerosol particles (FBAP). In the coarse particle size range (> 1 μm) the campaign median and quartiles of FBAP number and mass concentration were 7.3 × 104 m−3 (4.0–13.2 × 104 m−3) and 0.72 μg m−3 (0.42–1.19 μg m−3), respectively, accounting for 24% (11–41%) of total particle number and 47% (25–65%) of total particle mass. During the five-week campaign in February–March 2008 the concentration of coarse-mode Saharan dust particles was highly variable. In contrast, FBAP concentrations remained fairly constant over the course of weeks and had a consistent daily pattern, peaking several hours before sunrise, suggesting observed FBAP was dominated by nocturnal spore emission. This conclusion was supported by the consistent FBAP number size distribution peaking at 2.3 μm, also attributed to fungal spores and mixed biological particles by scanning electron microscopy (SEM), light microscopy and biochemical staining. A second primary biological aerosol particle (PBAP) mode between 0.5 and 1.0 μm was also observed by SEM, but exhibited little fluorescence and no true fungal staining. This mode may have consisted of single bacterial cells, brochosomes, various fragments of biological material, and small Chromalveolata (Chromista) spores. Particles liquid-coated with mixed organic-inorganic material constituted a large fraction of observations, and these coatings contained salts likely from primary biological origin. We provide key support for the suggestion that real-time laser-induce fluorescence (LIF) techniques using 355 nm excitation provide size-resolved concentrations of FBAP as a lower limit for the atmospheric abundance of biological particles in a pristine environment. We also show some limitations of using the instrument for ambient monitoring of weakly fluorescent particles < 2 μm. Our measurements confirm that primary biological particles, fungal spores in particular, are an important fraction of supermicron aerosol in the Amazon and that may contribute significantly to hydrological cycling, especially when coated by mixed inorganic material.


2012 ◽  
Vol 12 (9) ◽  
pp. 25181-25236 ◽  
Author(s):  
J. A. Huffman ◽  
B. Sinha ◽  
R. M. Garland ◽  
A. Snee-Pollmann ◽  
S. S. Gunthe ◽  
...  

Abstract. As a part of the AMAZE-08 campaign during the wet season in the rainforest of Central Amazonia, an ultraviolet aerodynamic particle sizer (UV-APS) was operated for continuous measurements of fluorescent biological aerosol particles (FBAP). In the coarse particle size range (> 1 μm) the campaign median and quartiles of FBAP number and mass concentration were 7.3 × 104 m−3 (4.0–13.2 × 104 m−3) and 0.72 μg m−3 (0.42–1.19 μg mm−3), respectively, accounting for 24% (11–41%) of total particle number and 47% (25–65%) of total particle mass. During the five-week campaign in February–March 2008 the concentration of coarse-mode Saharan dust particles was highly variable. In contrast, FBAP concentrations remained fairly constant over the course of weeks and had a consistent daily pattern, peaking several hours before sunrise, suggesting observed FBAP was dominated by nocturnal spore emission. This conclusion was supported by the consistent FBAP number size distribution peaking at 2.3 μm, also attributed to fungal spores and mixed biological particles by scanning electron microscopy (SEM), light microscopy and biochemical staining. A second primary biological aerosol particle (PBAP) mode between 0.5 and 1.0 μm was also observed by SEM, but exhibited little fluorescence and no fungal staining. This mode consisted of single bacterial cells, brochosomes and various fragments of biological material. Particles liquid-coated with mixed organic-inorganic material constituted a large fraction of observations, and these coatings contained salts likely from primary biological origin. We provide key support for the suggestion that real-time laser-induce fluorescence (LIF) techniques provide size-resolved concentrations of FBAP as a lower limit for the atmospheric abundance of biological particles. We also show that primary biological particles, fungal spores in particular, are key fractions of supermicron aerosol in the Amazon and that, especially when coated by mixed inorganic material, could contribute significantly to hydrological cycling in such regions of the globe.


Sign in / Sign up

Export Citation Format

Share Document