fluidic actuators
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 20)

H-INDEX

15
(FIVE YEARS 1)

2022 ◽  
pp. 107754632110514
Author(s):  
Sivakumar Solaiachari ◽  
Jayakumar Lakshmipathy

In this study, a new type of vibration isolator based on fluidic actuators and a composite slab was tested experimentally with an unbalanced disturbance. Quasi-zero stiffness vibration isolation techniques are advanced and provide effective isolation performance for non-nominal loads. The isolation performance of the proposed isolator was compared to that of a nonlinear vibration isolator equipped with fluidic actuators and a mechanical coil spring (NLVIFA). The NLVIFA system is better suited to non-nominal loads; however, the mechanical spring axial deflection leads to limited amplitude reduction in the system. To address this issue, a cross buckled slab was developed to replace a mechanical coil spring for absorbing vertical deflection by transverse bending, which is made of a specially developed composite material of Basalt fiber reinforced with epoxy resin and enhanced with graphene nano pellets. This current study was concerned with the theoretical analysis and experimental investigations of the proposed nonlinear vibration isolator with fluidic actuators and composite material (NLVIFA-CM), which performs under quasi-zero stiffness characteristics. Because of its reduced axial deflection, the theoretical and experimental results show that the NLVIFA-CM system outperforms the NLVIFA system and other linear type vibration isolators in terms of isolation performance. Furthermore, the proposed vibration isolator makes a significant contribution to low-frequency vibration.


Author(s):  
Woongbae Kim ◽  
Jaemin Eom ◽  
Kyujin Cho

Soft fluidic actuators produce continuous and life-like motions that are intrinsically safe, but current designs are not yet mature enough to enable large deployment with high force and low-cost fabrication methods. Here, soft fluidic actuators with two superimposed origami architectures are reported. Driven by a fluid input, the presented dual-origami soft actuators produce quasi-sequential deployment and bending motion that is guided by unsymmetric unfolding of low-stretchable origami components. The dominance between the deployment and bending can be shifted by varying the unfolding behavior, enabling pre-programming of the motion. The proposed origami-inspired soft actuators are directly fabricated by low-cost fused deposition modeling 3D-printing, and subjected to a heat treatment post-processing to enhance the fluid sealing performance. Finally, soft gripper applications are presented and they successfully demonstrate gripping tasks that each requires strength, delicacy, precision and dexterity. The dual-origami approach offers a design guidance for soft robots to embody grow-and-retract motion with a small initial form factor, promising for applications in next-generation soft robotic systems.


Author(s):  
Woongbae Kim ◽  
Jaemin Eom ◽  
Kyujin Cho

Soft fluidic actuators produce continuous and life-like motions that are intrinsically safe, but current designs are not yet mature enough to enable large deployment with high force and low-cost fabrication methods. Here, soft fluidic actuators with two superimposed origami architectures are reported. Driven by a fluid input, the presented dual-origami soft actuators produce quasi-sequential deployment and bending motion that is guided by unsymmetric unfolding of low-stretchable origami components. The dominance between the deployment and bending can be shifted by varying the unfolding behavior, enabling pre-programming of the motion. The proposed origami-inspired soft actuators are directly fabricated by low-cost fused deposition modeling 3D-printing, and subjected to a heat treatment post-processing to enhance the fluid sealing performance. Finally, soft gripper applications are presented and they successfully demonstrate gripping tasks that each requires strength, delicacy, precision and dexterity. The dual-origami approach offers a design guidance for soft robots to embody grow-and-retract motion with a small initial form factor, promising for applications in next-generation soft robotic systems.


Author(s):  
Amir Pagoli ◽  
Frederic Chapelle ◽  
Juan Antonio Corrales Ramón ◽  
Youcef Mezouar ◽  
Yuri Lapusta

Abstract Soft actuators can be classified into five categories: tendon-driven actuators, electroactive polymers (EAPs), shape-memory materials, soft fluidic actuators (SFAs), and hybrid actuators. The characteristics and potential challenges of each class are explained at the beginning of this review. Furthermore, recent advances especially focusing on soft fluidic actuators (SFAs) are illustrated. There are already some impressive SFA designs to be found in the literature, constituting a fundamental basis for design and inspiration. The goal of this review is to address the latest innovative designs for SFAs and their challenges and improvements with respect to previous generations, and help researchers to select appropriate materials for their application. We suggest six influential designs: pneumatic artificial muscles (PAM), PneuNet, continuum arm, universal granular gripper, origami soft structure, and vacuum-actuated muscle-inspired pneumatic (VAMPs). The hybrid design of SFAs for improved functionality and shape controllability is also considered. Modeling SFAs, based on previous research, can be classified into three main groups: analytical methods, numerical methods, and model-free methods. We demonstrate the latest advances and potential challenges in each category. Regarding the fact that the performance of soft actuators is dependent on material selection, we then focus on the behaviors and mechanical properties of the various types of silicone which can be found in the SFA literature. For a better comparison of the different constitutive models of silicone materials which have been proposed and tested in the literature, ABAQUS software is here employed to generate the engineering and true strain-stress data from the constitutive models, and compare them with standard uniaxial tensile test data based on ASTM412. Although the figures presented show that in a small range of stress-strain data, most of these models can predict the material model acceptably, few of them predict it accurately for large strain-stress values.


2021 ◽  
pp. 1-10
Author(s):  
Antoine Pfeil ◽  
Marius Siegfarth ◽  
Tim Philipp Pusch ◽  
Laurent Barbé ◽  
François Geiskopf ◽  
...  

Abstract Design of fluidic actuators remain challenging in specific contexts such as the medical field, when solutions have for instance to be compatible with the stringent requirements of magnetic resonance imaging. In this paper, an innovative design of hydraulically-actuated revolute joint is introduced. The design originality is linked to the use of multimaterial additive manufacturing for its production. Hydraulic actuation and polymer manufacturing are selected to have compatibility with the medical context. A design taking advantage of the process capabilities is proposed. The proposed component associates a large stroke compliant revolute joint and miniature pistons. An helical rack-and-pinion mechanism is integrated to the compliant joint to control the joint rotation. A specific gear geometry is elaborated to minimize the joint size. It is experimentally characterized in terms of range of motion, stiffness and available torque, to discuss the suitability of the component as a fluidic actuator. The component offers an interesting compactness, range of motion and the process is shown to be adequate for the design of functional systems.


2021 ◽  
Vol 118 (39) ◽  
pp. e2106553118
Author(s):  
Ronald H. Heisser ◽  
Cameron A. Aubin ◽  
Ofek Peretz ◽  
Nicholas Kincaid ◽  
Hyeon Seok An ◽  
...  

Existing tactile stimulation technologies powered by small actuators offer low-resolution stimuli compared to the enormous mechanoreceptor density of human skin. Arrays of soft pneumatic actuators initially show promise as small-resolution (1- to 3-mm diameter), highly conformable tactile display strategies yet ultimately fail because of their need for valves bulkier than the actuators themselves. In this paper, we demonstrate an array of individually addressable, soft fluidic actuators that operate without electromechanical valves. We achieve this by using microscale combustion and localized thermal flame quenching. Precisely, liquid metal electrodes produce sparks to ignite fuel lean methane–oxygen mixtures in a 5-mm diameter, 2-mm tall silicone cylinder. The exothermic reaction quickly pressurizes the cylinder, displacing a silicone membrane up to 6 mm in under 1 ms. This device has an estimated free-inflation instantaneous stroke power of 3 W. The maximum reported operational frequency of these cylinders is 1.2 kHz with average displacements of ∼100 µm. We demonstrate that, at these small scales, the wall-quenching flame behavior also allows operation of a 3 × 3 array of 3-mm diameter cylinders with 4-mm pitch. Though we primarily present our device as a tactile display technology, it is a platform microactuator technology with application beyond this one.


Automation ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 187-201
Author(s):  
Antonio Ribas Neto ◽  
Julio Fajardo ◽  
Willian Hideak Arita da Silva ◽  
Matheus Kaue Gomes ◽  
Maria Claudia Ferrari de Castro ◽  
...  

People taken by upper limb disorders caused by neurological diseases suffer from grip weakening, which affects their quality of life. Researches on soft wearable robotics and advances in sensor technology emerge as promising alternatives to develop assistive and rehabilitative technologies. However, current systems rely on surface electromyography and complex machine learning classifiers to retrieve the user intentions. In addition, the grasp assistance through electromechanical or fluidic actuators is passive and does not contribute to the rehabilitation of upper-limb muscles. Therefore, this paper presents a robotic glove integrated with a force myography sensor. The glove-like orthosis features tendon-driven actuation through servo motors, working as an assistive device for people with hand disabilities. The detection of user intentions employs an optical fiber force myography sensor, simplifying the operation beyond the usual electromyography approach. Moreover, the proposed system applies functional electrical stimulation to activate the grasp collaboratively with the tendon mechanism, providing motion support and assisting rehabilitation.


2021 ◽  
Vol 69 (9) ◽  
pp. 739-749
Author(s):  
Theresa Kleine ◽  
Julia L. Wagner ◽  
Michael Böhm ◽  
Oliver Sawodny

Abstract Adaptive structures where actuators are incorporated into a building structure have the potential to reduce resource consumption in construction industry drastically. However, the performance of static load compensation depends to a large extend on the actuator placement. This paper presents optimal actuator placement for systems with distributed parameters based on the Gramian compensability matrix. To provide a general framework for different kind of loads, static loads are discretized as Dirac impacts. The resulting optimal actuator placement is robust against unknown load amplitudes, as load profiles are only considered qualitatively in the cost function. Further, the optimal control input for a given load results directly from the optimization problem. The procedure is illustrated for a Kirchhoff-Love plate and integrated fluidic actuators.


Author(s):  
Gerardo Paolillo ◽  
Carlo Salvatore Greco ◽  
Gennaro Cardone ◽  
Tommaso Astarita

Sweeping jets are oscillating jets generated by fluidic oscillators, i.e., devices designed to produce an oscillation of the flow without the use of any moving parts (Raghu, 2013). A typical configuration of such devices consists of an expansion chamber connected to a high-pressure supply via a converging nozzle and provided with feedback channels. The oscillating motion in the expansion chamber is triggered by an inherent flow instability and sustained by the flow rate across the feedback channels. Recently, sweeping jets have been studied in flow control applications for noise reduction, separation and circulation control over airfoils, control of resonant cavity oscillations and deflection of jets. The advantageous features of fluidic actuators, among which are the wide range of operating frequencies (up to kHz with meso-scale) and the distributed momentum addition, have also stimulated an increasing interest in their application to electronics cooling. Several recent studies on the convective heat transfer from impinging sweeping jets (e.g., Hossain et al., 2018; Park et al., 2018) have shown that, compared to conventional round jets, they offer higher cooling rates with better uniformity at least for small jet-to-plate spacings.


2021 ◽  
Author(s):  
Thomas R. Shearwood ◽  
Mostafa R. Nabawy ◽  
William J. Crowther ◽  
Clyde Warsop

Sign in / Sign up

Export Citation Format

Share Document