cylindrical phase space
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Jamshid I. Buranov ◽  
Jumanazar Kh. Khusanov

Abstract. The stability problem of a system of differential equations with a right-hand side periodic with respect to the phase (angular) coordinates is considered. It is convenient to consider such systems in a cylindrical phase space which allows a more complete qualitative analysis of their solutions. The authors propose to investigate the dynamic properties of solutions of a non-autonomous system with angular coordinates by constructing its topological dynamics in such a space. The corresponding quasi-invariance property of the positive limit set of the system’s bounded solution is derived. The stability problem with respect to part of the variables is investigated basing of the vector Lyapunov function with the comparison principle and also basing on the constructed topological dynamics. Theorem like a quasi-invariance principle is proved on the basis of a vector Lyapunov function for the class of systems under consideration. Two theorems on the asymptotic stability of the zero solution with respect to part of the variables (to be more precise, non-angular coordinates) are proved. The novelty of these theorems lies in the requirement only for the stability of the comparison system, in contrast to the classical results with the condition of the corresponding asymptotic stability property. The results obtained in this paper make it possible to expand the usage of the direct Lyapunov method in solving a number of applied problems.


2020 ◽  
Vol 248 (4) ◽  
pp. 457-466
Author(s):  
S. S. Mamonov ◽  
A. O. Kharlamova

2019 ◽  
Vol 489 (6) ◽  
pp. 541-544
Author(s):  
N. V. Kuznetsov ◽  
M. Y. Lobachev ◽  
M. V. Yuldashev ◽  
R. V. Yuldashev

This report shows the possibilities of solving the Gardner problem of determining the lock-in range for multidimensional phase-locked loops systems. The development of analogs of classical stability criteria for the cylindrical phase space made it possible to obtain analytical estimates of the lock-in range for third-order system.


2005 ◽  
Vol 15 (04) ◽  
pp. 1423-1431 ◽  
Author(s):  
YING YANG ◽  
ZHISHENG DUAN ◽  
LIN HUANG

This paper investigates the nonexistence of a specific kind of periodic solutions in a class of nonlinear dynamical systems with cylindrical phase space. Those types of systems can be viewed as an interconnection of several simpler subsystems with the interconnecting structure specified by a permutation matrix. Frequency-domain conditions as well as linear matrix inequalities conditions for nonexistence of limit cycles of the second kind are established. The main results also define the frequency range on which cycles of the second kind of the system cannot exist. Based on this LMI approach, an estimate of the frequency of cycles of the second kind can be explicitly computed by solving a generalized eigenvalue minimization problem. Numerical results demonstrate the applicability and validity of the proposed method and show the effect of nonlinear interconnections on dynamical behavior of entire interconnected systems.


Sign in / Sign up

Export Citation Format

Share Document